Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Thu Phương
Xem chi tiết
Ashshin HTN
6 tháng 7 2018 lúc 15:46

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Be Bi Sociu
Xem chi tiết
Hảo Hảo
Xem chi tiết
Ngọc Vĩ
27 tháng 7 2015 lúc 21:47

có VT \(=\left(\frac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}-\frac{6\sqrt{6}}{3}\right).\frac{1}{\sqrt{6}}=\left(\frac{\sqrt{3}}{\sqrt{2}}-2\sqrt{6}\right).\frac{1}{\sqrt{6}}=\frac{-3\sqrt{3}}{\sqrt{2}}.\frac{1}{\sqrt{6}}=\frac{-3}{2}\)

dpcm

Anh Kiet Tram
27 tháng 7 2015 lúc 21:53

Ta có: \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)

  \(=\left\{\left[\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}\right]-\frac{6\sqrt{6}}{3}\right\}\times\frac{1}{\sqrt{6}}\)

  \(=\left(\frac{\sqrt{6}}{2}-2\sqrt{6}\right)\times\frac{1}{\sqrt{6}}\)

  \(=\left(-\frac{3\sqrt{6}}{2}\right)\times\frac{1}{\sqrt{6}}\)

  \(=\frac{-3}{2}\)(đpcm)

  

Nguyễn Đức Hạnh Nhân
Xem chi tiết
Minh  Ánh
5 tháng 8 2016 lúc 9:12

ta tính VT ra xong rồi nói VT = VP

lư thị ngọc giao
Xem chi tiết
nguyen minh quang
3 tháng 8 2017 lúc 9:02

bn phải nói chứng minh gì mk mới giải đc chứ

Charlet
Xem chi tiết
Mai Thị Huyền My
Xem chi tiết
Trần Việt Linh
8 tháng 10 2016 lúc 16:18

a) Biến đổi vế trái ta có:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)

\(=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{9\sqrt{6}+4\sqrt{6}-12\sqrt{6}}{6}=\frac{\sqrt{6}}{6}=VP\)

Vậy đẳng thức trên đc chứng minh

b) Biến đổi vế trái ta có:

\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)

\(=\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right)\cdot\frac{1}{\sqrt{6x}}\)

\(=x\sqrt{\frac{6}{x}\cdot\frac{1}{6x}}+\sqrt{\frac{2x}{3}\cdot\frac{1}{6x}}+\sqrt{6x}\cdot\frac{1}{\sqrt{6x}}\)

\(=x\sqrt{\frac{1}{x^2}}+\sqrt{\frac{1}{9}}+1=1+\frac{1}{3}+1=2\frac{1}{3}=VP\)

Vậy đẳng thức trên đc chứng minh

 

Lê Minh Tú
Xem chi tiết
Linh_Chi_chimte
27 tháng 12 2017 lúc 19:31

bạn giải ra chưa vậy, mk giúp cho

Lê Minh Tú
27 tháng 12 2017 lúc 19:33

Bạn làm giùm mình nha! Cảm ơn bạn!

Huy Hoang
27 tháng 9 2020 lúc 20:48

\(a)\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)

Biến đổi vế trái , ta có :

\(VT=\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{3^2.\frac{2}{3}}-2\sqrt{2^2.\frac{3}{2}}\)

\(=\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\)

\(=\left(\frac{3}{2}+\frac{2}{3}-2\right)\sqrt{6}\)

\(=\frac{1}{6}\sqrt{6}=\frac{\sqrt{6}}{6}=VP\left(đpcm\right)\)

\(b)\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}=2\frac{1}{3}\)

Biến đổi vế trái , ta có :

\(VT=\left(\sqrt{x^2.\frac{6}{x}}+\sqrt{\frac{6x}{3^2}}+\sqrt{6x}\right):\sqrt{6x}\)

\(=\left(\sqrt{6x}+\frac{1}{3}\sqrt{6x}+\sqrt{6x}\right):\sqrt{6x}\)

\(=\frac{7}{3}\sqrt{6x}:\sqrt{6x}\)

\(=\frac{7}{3}=2\frac{1}{3}=VP\)với x > 0 ( đpcm )

Khách vãng lai đã xóa
Trương Khánh Vy
Xem chi tiết