tìm x,y ,z biết x/3=y/4=z/3 và x^2 + 2y^2+4z^2=141
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Tìm x, y, z biết:
a) x/2 = y/3 ; y/2 = z/5 và x+y+z = 50
b) 3x = 2y và (x+y)^3 - (x-y)^3 = 126
c) (x+1)/3 = (y+2)/-4 = (z-3)/5 và 3x + 2y + 4z = 47
x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15
adtcdtsbn:
x/4=y/6=z/15=x+y+z/4+6+15=50/25=2
suy ra : x/4=2=>x=4.2=8
y/6=2=>y=2.6=12
z/15=2 => z=15.2=30
Tìm x,y,z biết x+1/3=y+2/-4=z-3/5 và 3x+2y+4z=47
Tìm x,y,z biết :
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và xyz =24
c)\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)
\(\Leftrightarrow141k^2=141\)
\(\Leftrightarrow k^2=1\)
\(\Leftrightarrow k=\pm1\)
TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)
TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy.....
a)
Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)
\(\frac{x}{3}=1\Rightarrow x=3.1=3\)
\(\frac{y}{4}=1\Rightarrow y=4.1=4\)
\(\frac{z}{5}=1\Rightarrow z=5.1=5\)
Vậy x = 3
y=4
z=5
b) xem lại đề
c) theo đề bài ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+7y-1-5y}{4x-5x}=\frac{2y}{-x}=\frac{1+5y-1-3y}{5x-12}\)
\(=\frac{2y}{5x-12}\)
\(\Rightarrow\frac{2y}{-x}=\frac{2y}{5x-12}\left(y=0\right)\) thay vào thì đề bài k thỏa mãn
*Nếu y khác 0
\(\Rightarrow-x=5x-12\)
\(\Rightarrow x=2\)
\(\frac{1+3y}{12}=\frac{2y}{-2}=-y\Rightarrow1+3y=-12y\Rightarrow1=-15y=\frac{-1}{15}\)
Vậy x = 2
y= -1/15
Tìm x,y,z biết: (x+1)/3 = (y+2)/-4 = (z-3)/5 và 3x+2y+4z = 47
\(\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}=\frac{3x+3+2y+4+4z-12}{-8+9+20}=\frac{42}{21}=2\)
=>x+1=6=>x=5
y+2=2.(-4)=-8=>y=-10
z-3=10=>x=13
vậy x=5;y=-10;z=13
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3.\left(x+1\right)+2.\left(y+2\right)+4.\left(z-3\right)}{3.3+2.\left(-4\right)+4.5}\)
\(=\frac{3x+3+2y+4+4z-12}{9-8+20}=\frac{\left(3x+2y+4z\right)+\left(3+4-12\right)}{21}\)
\(=\frac{47-5}{21}=2\)
suy ra: \(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)
\(\frac{x+2}{-4}=2\Rightarrow x+2=-8\Rightarrow x=-6\)
\(\frac{z-3}{5}=2\Rightarrow z-3=10\Rightarrow z=13\)
Tìm x, y, z biết:
1: 3x = 2y và (x+y)^3 - (x-y)^3 = 126
2: (x+1)/3 = (y+2)/-4 = (z-3)/5 và 3x+2y+4z = 47
Câu hỏi của Trang Đinh Huyền - Toán lớp 7 - Học toán với OnlineMath
tìm x, y, z biết:
1: 3x = 2y và (x+y)^3 - (x-y)^3 = 126
2: (x+1)/3 = (y+2)/-4 = (z-3)/5 và 3x+2y+4z = 47
tìm các số x, y ,z, biết rằng:
a) x:y:z=3:4:5 và 5z^2-3x^2-2y^2=594
b) 3(x-1)=2(y-2);4(y-2)=3(z-3) và 2x+3y-z=50
c) 2x/3=3y/4=4z/5 và x+y-z =38
Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!
Answer:
a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Ta có: \(5z^2-3x^2-2y^2=594\)
\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)
\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)
\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)
\(\Rightarrow125k^2-27k^2-32k^2=594\)
\(\Rightarrow k^2.\left(125-27-32\right)=594\)
\(\Rightarrow k^2.66=594\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)
Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)
Answer:
b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)
Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)
\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)
\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)
\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)
\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)
Tìm x; y; z biết:
a) 2x/3 = 3y/4=4z/5 và x + y + z = 49
b)x-1/2=y-2/3=z-3/4 và 2x+3y-z=50
c)x\2=y/3=z/5 và xyz=810
d)x:y:z=3:4:5 và 2x^2+2y^2-3Z^2 =100
dể nhưng dài quá ,ko ai làm nỗi đâu bn ơi
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
quynh nhu ơi dễ nhưng bạn chỉ làm 1 câu thôi