Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
khánh linh
Xem chi tiết
Toàn Nguyễn Khánh
Xem chi tiết
Nhật Hạ
8 tháng 12 2019 lúc 18:22

1, Ta có:\(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)\(\Rightarrow\frac{2a+15b}{2c+15d}=\frac{5a-7b}{5c-7d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2a+15b}{2c+15d}=\frac{5a-7b}{5c-7d}=\frac{2a+15b+5a-7b}{2c+15d+5c-7d}=\frac{7a-8b}{7c-8d}\)

\(\Rightarrow\frac{7a-8b}{7c-8d}=\frac{7a}{7c}=\frac{8b}{8d}\)\(\Rightarrow\frac{7a}{7c}=\frac{8b}{8d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)(đpcm)

2, Ta có: \(4^{30}=2^{30}.2^{30}=2^{30}.\left(2^2\right)^{15}=2^{30}.4^{15}\)

Lại có: \(3.24^{10}=3.3^{10}.8^{10}=3^{11}.\left(2^3\right)^{10}=3^{11}.2^{30}\)

Vì \(4^{15}>3^{11}\)\(\Rightarrow2^{30}.4^{15}>2^{30}.3^{11}\)\(\Rightarrow4^{30}>3.24^{10}\)\(\Rightarrow2^{30}+3^{30}+4^{30}>3.24^{10}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
1 tháng 1 2020 lúc 18:01

Sửa lại câu 1.

Với đk: \(5a\ne7b;5c\ne7d\);  \(b;d\ne0\).

\(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)

TH1: \(2c+15d=0\)=> \(2a+15b=0\)=> \(\frac{a}{b}=\frac{c}{d}\)

TH2: \(2c+15d\ne0\)

=> \(\frac{2a+15b}{2c+15d}=\frac{5a-7b}{5c-7d}\)

=> \(\frac{5\left(2a+15b\right)}{5\left(2c+15d\right)}=\frac{2\left(5a-7b\right)}{2\left(5c-7d\right)}\)

=> \(\frac{10a+75b}{10c+75d}=\frac{10a-14b}{10c-14d}\)

Áp dụng dãy tỉ số bằng nhau ta có: 

\(\frac{10a+75b}{10c+75d}=\frac{10a-14b}{10c-14d}=\frac{10a+75b-10a+14b}{10c+75d-10c+14d}=\frac{89b}{89d}=\frac{b}{d}\)

=> \(\frac{10a+75b}{10c+75d}=\frac{b}{d}=\frac{75b}{75d}=\frac{10a+75b-75b}{10c+75d-75d}=\frac{10a}{10c}=\frac{a}{c}\)

=> \(\frac{b}{d}=\frac{a}{c}\)

=> \(\frac{a}{b}=\frac{c}{d}\).

Khách vãng lai đã xóa
Kudo Shinichi
1 tháng 1 2020 lúc 20:52

Bạn thiếu điều kiện cô Linh Chi đã bổ sung thêm rồi còn mình chỉ làm bài thôi

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\frac{2a+15b}{5a-7b}=\frac{2bk+15b}{5bk-7b}=\frac{b\left(2k+15\right)}{b\left(5k-7\right)}=\frac{2k+15}{5k-7}\left(1\right)\)

\(\frac{2c+15d}{5c-7d}=\frac{2dk+15d}{5dk-7d}=\frac{d\left(2k+15\right)}{d\left(5k-7\right)}=\frac{2k+15}{5k-7}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Nguyễn Lam Giang
Xem chi tiết
Bảo Nam
30 tháng 9 2019 lúc 20:07

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Thay a = bk; c = dk vào đẳng thức \(\frac{2a+15b}{5a-7b}=\frac{2a+15d}{5c-7d}\). Ta được: 

+, \(\frac{2bk+15b}{5bk-7b}=\frac{b\left(2k+15\right)}{b\left(5k-7\right)}=\frac{2k+15}{5k-7}\)(1)

+, \(\frac{2dk+15d}{5dk-7d}=\frac{d\left(2k+15\right)}{d\left(5k-7\right)}=\frac{2k+15}{5k-7}\)(2)

Từ (1) và (2) 

\(\Rightarrow\frac{2bk+15b}{5bk-7b}=\frac{2dk+15d}{5dk-7d}\)

Hay \(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)<đpcm>

Xyz OLM
30 tháng 9 2019 lúc 20:12

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Khi đó : \(\frac{2a+15b}{5a-7b}=\frac{2bk+15b}{5bk-7b}=\frac{b\left(2k+15\right)}{b\left(5k-7\right)}=\frac{2k+15}{5k-7}\left(1\right)\)

\(\frac{2c+15d}{5c-7d}=\frac{2dk+15d}{5dk-7d}=\frac{d\left(2k+15\right)}{d\left(5k-7\right)}=\frac{2k+15}{5k-7}\left(2\right)\)

Từ (1) và (2) 

=> \(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\left(\text{đpcm}\right)\)

Đặng Quang Huy
Xem chi tiết
le syn dùog
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Hiếu
25 tháng 3 2018 lúc 21:34

Bài 2 : 

1. Ta có : AB=AC <=> AM+MB=AN+NC 

Mà AM=AN nên MB=MC

2. Kẻ BI vuông góc với MN và CE vuông góc với MN ( I và E thuộc đoạn MN kéo dài )

Xét hai tam giác vuông MBI và NCE có : 

BM>CN ( do AB>AC )

=> IB>CE và IM>EN  => IM+MN>EN+MN <=> NI>ME

Xét hai tam giác vuông IBN và ECM có : NI>ME và IB>CE => BN>CM 

( vì hai cạnh góc vuông lớn hơn nên cạnh huyền cũng lớn hơn )

Arima Kousei
25 tháng 3 2018 lúc 21:09

Sai đề bài 1 : 

Chỗ kia là dấu " = " chứ 

Hiếu
25 tháng 3 2018 lúc 21:14

Giả sử ta có : \(\frac{a}{b}=\frac{c}{d}=k\) => \(\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)

=> \(\frac{2a+15b}{5a-7b}=\frac{2bk+15b}{5bk-7b}=\frac{2k+15}{5k-7}\)(1)

=> \(\frac{2c+15d}{5c-7d}=\frac{2dk+15d}{5dk-7d}=\frac{2k+15}{5k-7}\)(2)

Từ 1 và 2 ta có : \(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)=> đpcm

Khoa Võ Đăng
Xem chi tiết
Nguyễn Quang Minh
4 tháng 1 2018 lúc 12:57

TỰ TÚC NHA!

Nguyen An Phuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 1:04

Đặt a/b=c/d=k

=>a=bk; c=dk

1: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2\cdot bk+15b}{5\cdot bk-7b}=\dfrac{2k+15}{5k-7}\)

\(\dfrac{2c+15d}{5c-7d}=\dfrac{2dk+15d}{5dk-7d}=\dfrac{2k+15}{5k-7}\)

Do đó: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2c+15d}{5c-7d}\)

2: \(\dfrac{a+2c}{b+2d}=\dfrac{bk+2dk}{b+2d}=k\)

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)

Do đó: \(\dfrac{a+2c}{b+2d}=\dfrac{a+c}{b+d}\)

hay (a+2c)(b+d)=(a+c)(b+2d)

Lê Thị Thúy
Xem chi tiết
Kurosaki Akatsu
18 tháng 3 2017 lúc 14:18

Ta có :

\(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)

\(\Rightarrow\left(2a+15b\right)\left(5c-7d\right)=\left(2c+15d\right)\left(5a-7b\right)\)

\(\Rightarrow2a\left(5c-7d\right)+15b\left(5c-7d\right)=2c\left(5a-7b\right)+15d\left(5a-7b\right)\)

\(\Rightarrow10ac-14ad+75bc-105bd=10ac-14cb+75ad-105bd\)

\(\Rightarrow-14ad=-14cb\)

=> ad = cb

=> \(\frac{a}{b}=\frac{c}{d}\)

Luyện Thị Thanh Thuý
18 tháng 3 2017 lúc 14:33

Giả sử a/b=c/d (vì a:b=c:d cũng là a/b=c/d)

Đặt a/b=c/d=k

=> a=bk ;c=dk

Thay a=bk vào vế trái ta đc:

2bk+15b/5bk-7b

=b^2 k(2+15)/b^2 k (5-7)

=-17/2 (1)

Thay c=dk vào vế phải ta đc:

2dk+15d/5dk-7d

=d^2 k(2+15)/d^2 k(5-7)

=-17/2 (2)

Từ (1) và (2) => (2a+15b)/(5a-7b)=(2c+15d)/(5c-7d) (vì cùng = -17/2)

Vậy giả sử trên là đúng.