CMR:
1/3+1/3^2+1/3^3+...+1/3^99 < 1/2
a,Cho B = 1/2+1/2^2+1/2^3+...+1/2^99. So sánh B với 1
b, Cho C = 1/3+(1/3)^2+(1/3)^2+(1/3)^3+...+(1/3)^99. CMR C < 1/2
CMR
1/2-1/4+1/8-1/16+1/32-1/64<1/3
1/3-2/3^2+3/3^3+4/3^4+...+99/3^99<3/16
Bài 1 :Rút gọn A=2^100-2^99+2^97+...+2^2 -2
B=3^100-3^99+3^98-3^97+...+3^@ +1
bài 2:
Cho C =1/3+1/3^2+1/3^3+...=1/3^99
CMR C<1/2
C = 1/3 + 1/3^2 + 1/3^3 + ... =1/3^99
=> C = 1/3^99 = 1/(3^99)
=> C < 1/2 (đpcm)
2A=2^101-2^100+2^98+...+2^3-2^2
3A = 2A + A
3A = 2^101 - 2 ( Cứ tính là ra , âm vs dương triệt tiêu )
A = (2^101-2) :3
B tăng tự
a) cho B = 1/2 + 1/2^2 + 1/2^3 +....+1/2^99. só sánh B với 1
b) cho C = 1/3 +(1/3)^2 + (1/3)^2 + (1/3)^3 + ..... + (1/3)^99. CMR C<1/2
a,Cho B = 1/2+1/2^2+1/2^3+...+1/2^99. So sánh B với 1
b, Cho C = 1/3+(1/3)^2+(1/3)^2+(1/3)^3+...+(1/3)^99. CMR C < 1/2
ta có: 2B=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
B=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+..+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
=>2B-B=\(1-\frac{1}{2^{99}}\)
mà 1/2^99>0 nên B<1 (đpcm)
CMR: Q= 1/3^1+1/3^2+1/3^3+...+1/3^99+1/3^100<1/2
1,2 : 10 = 0,12
4,6 : 1000 = 0,0046
781,5 : 100 = 7,815
15,4 : 100 = 0,154
45,82 : 10 = 4,582
15632 : 1000 = 15,632
hok tốt nha ^_^
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
\(\frac{A}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}.....+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)
\(A-\frac{A}{3}=\frac{2A}{3}=\frac{1}{3}=\frac{1}{3}-\frac{1}{3^{101}}\Rightarrow2A=1-\frac{1}{3^{100}}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{100}}< \frac{1}{2}\)
CMR:
a)1/2-1/4+1/8-1/16+1/32-1/64<1/3
b)1/3 - 2/3^2 + 3/3^3 - 4/3^4 +...+ 99/3^99 -100/3^100 < 3/16
cmr
a) 1/2 -1/4+1/8-1/16+1/32-1/64 <1/3
b) 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
M=1/3+1/3^2+1/3^3+....+1/3^99. CMR: M<1/2
\(\frac{1}{3}M=\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{100}}\)
\(M-\frac{1}{3}M=\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+....+\left(\frac{1}{3^{99}}-\frac{1}{3^{99}}\right)+\frac{1}{3}-\frac{1}{3^{100}}\)
\(\frac{2}{3}M=\frac{1}{3}-\frac{1}{3^{100}}\)
Vậy \(M=\left(\frac{1}{3}-\frac{1}{3^{100}}\right):\frac{2}{3}=\frac{1}{2}-\frac{1}{2.3^{99}}<\frac{1}{2}\)
KL: M < 1/2 (dpcm)
Cho C = 1/3 + 1/3^2 + 1/3^2 + 1/3^3 + ... + 1/3^99
CMR C < 1/2