tìm ưcln của \(\frac{n\left(n+1\right)}{2}\)và \(2n+1\)( n thuộc n * )
Tìm ƯCLN của \(\frac{n\left(n+1\right)}{2}\)và 2n + 1 ( n \(\in\)N* )
gọi d thuộc ƯC(n(n+1)/2 ; 2n+1) với d thuộc N*
=>n(n+1)/2 chia hết cho d hay n.(n+1) chia hết cho d và 2n+1 chia hết cho d
=>n(2n+1)-n(n+1) chia hết cho d
=>2n^2+n-n^2+n chia hết cho d =>n^2+(n^2+n-n^2+n) chia hết cho d
=>n^2 chia hết cho d
TỪ n.(n+1)=n^2+n chia hết cho d và n^2 chia hết cho d =>n chia hết cho d
Ta lại có 2n+1 chia hết cho d,mà n chia hết cho d=> 2n chia hết cho d =>1 chia hết cho d =>d=1
giup mình với mình cần gấp ,phải nộp bài cho thầy rùi
Câu1:tìm 2 số có tổng=66,ƯCLN=6,có 1 số chia hết cho 5
Câu2:biết (5n+6,8n+7)không nguyên tố cùng nhau.tìm ƯCLN của hai số
Câu3:tìm ƯCLN :
a,(76,1995)
b,(2n+1,3n+1) n thuộc N
c,(2n+3,n+1)
d,(\(\frac{n\left(n+1\right)}{2};2n+1\)
Câu4:tìm n thuộc N đẻ (7n+13;2n+4)=1
ai làm đúng và nhanh mình cho 5 tích luôn
Tìm n thuộc N, biết: \(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)...2n}\frac{1}{2^n}\)
Bài 1 : Cho \(A=\frac{n\left(n+1\right)}{2}\)và \(B=2n+1\left(n\inℕ^∗\right)\). TÌM ƯCLN ( A , B ) ?
Gọi UCLN (A;B) là : d
=> \(A⋮d\)
\(\Rightarrow\frac{n^2}{2}+\frac{n}{2}⋮d\)
\(\Rightarrow\frac{4}{n}\left(\frac{n^2}{2}+\frac{n}{2}\right)⋮d\)
\(\Rightarrow2n+2⋮d\)
\(\Rightarrow2n+2-2n-1⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy...............
Tìm ƯCLN của các số sau:
a. 2n - 1 và 9n + 4
b. 4n + 3 và 5n + 1
c. n và n + 2
d. \(\frac{n\left(n+1\right)}{2}\) và 2n + 1
c) Gọi d là ƯCLN(n; n+2)
=> n chia hết cho d
=> n+2 chia hết cho d
<=> n+2 -n chia hết cho d
=> 2 chia hết cho d
=> d=1 hoăc d=2
=> ƯCLN(n;n+2) là 2
Vậy...
Bài * : Tìm ƯCLN của \(\frac{n\left(n+1\right)}{2}\) và 2n + 1 (n \(\in\) N*)
Gọi \(d\inƯC\left(\frac{n\left(n+1\right)}{2};2n+1\right)\) (d \(\in\) N*) \(\Rightarrow\) \(\frac{n\left(n+1\right)}{2}\)⋮ d hay n(n + 1) ⋮ d và 2n + 1 ⋮ d.
Suy ra n(2n + 1) - n(n + 1) = 2n2 + n - n2 + n = n2 + (n2 + n - n2 + n) = n2 ⋮ d.
Từ n(n + 1) = n2 + n ⋮ d và n2 ⋮ d \(\Rightarrow\) n ⋮ d.
Ta lại có 2n + 1 ⋮ d , mà n ⋮ d \(\Rightarrow\) 2n ⋮ d , do đó 1 ⋮ d. \(\Rightarrow\) d = 1
Vậy ƯCLN của \(\frac{n\left(n+1\right)}{2}\) và 2n + 1 là 1.
Gọi
d
∈
Ư
C
(
n
(
n
+
1
)
2
;
2
n
+
1
)
(d
∈
N*)
⇒
n
(
n
+
1
)
2
⋮ d hay n(n + 1) ⋮ d và 2n + 1 ⋮ d.
Suy ra n(2n + 1) - n(n + 1) = 2n2 + n - n2 + n = n2 + (n2 + n - n2 + n) = n2 ⋮ d.
Từ n(n + 1) = n2 + n ⋮ d và n2 ⋮ d
⇒
n ⋮ d.
Ta lại có 2n + 1 ⋮ d , mà n ⋮ d
⇒
2n ⋮ d , do đó 1 ⋮ d.
⇒
d = 1
Vậy ƯCLN của
n
(
n
+
1
)
2
và 2n + 1 là 1.
Tìm ƯCLN của \(\frac{n\left(n+1\right)}{2}\)với \(2n+1\)
Gọi \(d=ƯCLN\left(\frac{n\left(n+1\right)}{2};2n+1\right)\)
=> \(\frac{n\left(n+1\right)}{2}⋮d\)
\(2n+1⋮d\)
=>\(n\left(n+1\right)⋮d\)
\(2n+1⋮d\)
=> \(n^2+n⋮d\)
\(2n+1⋮d\)
=>\(2.\left(n^2+n\right)⋮d\)
\(n.\left(2n+1\right)⋮d\)
=>\(2n^2+2n⋮d\)
\(2n^2+n⋮d\)
=>\(\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)
=>\(n⋮d\)
=>\(2n⋮d\)
=> \(\left(2n+1\right)-2n⋮d\)
=> \(1⋮d\)
=> d=1
Vậy \(ƯCLN\left(\frac{n\left(n+1\right)}{2};2n+1\right)=1\)
tìm UCLN của \(\frac{n.\left(n+1\right)}{2}\)và 2n + 1 ( n thuộc N )
gọi UCLN là d
tớ chỉ làm cách biến đổi thôi:
n(n+1)/2=8.n(n+1)/2=4.[n(n+1)]=4(n2+n)=4n2+4n
và 2n+1=2.(2n+1)=4n+2=n(4n+2)=4n2+2n
bạn tự làm tiếp nhé đoạn cuối là 2d chia hết cho d
mà 2d+1 chia hết cho d nên 1 chia hết cho d
1. Tìm x;y nguyên tố biết : 59x + 46y=2004
2. CMR: \(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{1}{2^n}\) với n thuộc N*
a, 59x + 46y = 2004
Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn
=> x là số chẵn, mà x là số nguyên tố
=> x = 2
=> 2.59 + 46y = 2004
=> 46y = 2004 ‐ 118
=> 46y = 1886
=> y = 1886:46 => y = 41
Vậy x = 2; y = 41