Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kudo shinichi
Xem chi tiết
Đức Lộc
Xem chi tiết
Trần tuấn anh
22 tháng 2 2019 lúc 19:42

pppppppppppppppppppppppppppppppppppppppppppppp'ppppppppppppppppppppppppppppp

ppppppppppppp

Con Chim 7 Màu
22 tháng 2 2019 lúc 19:45

Tao co:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow yz+xz+xy=0\)

\(Suyra:yz=-xz-xy;xz=-yz-xy;xy=-yz-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xz-xy=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

\(\Rightarrow y^2+2xz=y^2+xz-yz-xy=z\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(z-y\right)\)

\(\Rightarrow z^2+2xy=z^2+xy-yz-xz=z\left(z-y\right)-x\left(z-y\right)=\left(z-y\right)\left(z-x\right)\)

\(Thay:\frac{1}{\left(x-y\right)\left(x-z\right)}+\frac{1}{\left(x-y\right)\left(z-y\right)}+\frac{1}{\left(z-y\right)\left(z-x\right)}\)

\(=\frac{z-y+x-z-x+y}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\left(dpcm\right)\)

^^

Harold Joseph
Xem chi tiết
Phương An
8 tháng 12 2016 lúc 19:38

\(\frac{x-y}{x+y}+\frac{x+y}{x-y}+\frac{4y^2}{y^2-x^2}\)

\(=\frac{\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}+\frac{\left(x+y\right)^2}{\left(x-y\right)\left(x+y\right)}-\frac{4y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\frac{x^2-2xy+y^2+x^2+2xy+y^2-4y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\frac{2x^2-2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\frac{2\left(x^2-y^2\right)}{x^2-y^2}\)

\(=2\)

 

NúBì s So s Kiuuuuuu s
Xem chi tiết

  Bài 1:  \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)

    \(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))

     (\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)

        (\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)

        (\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2

        \(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\) 

TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\) 

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\) 

TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)  

    Vậy (\(x;y\)  ) = (- \(\dfrac{1}{2}\)\(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))

       

                   

         

 

       

        

 

           

 

See you again
Xem chi tiết
Trà My
18 tháng 9 2017 lúc 17:11

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2x}{4}=\frac{3x}{9}=\frac{5z}{20}=\frac{2x+3y-5z}{4+9-20}=\frac{-21}{-7}=3\)

=>x=3.2=6;y=3.3=9;z=3.4=12

Nguyễn Ngọc Tuệ Anh
Xem chi tiết
Nguyễn Ngọc Phượng
Xem chi tiết
Võ Đông Anh Tuấn
25 tháng 11 2016 lúc 10:46

Ta có : \(\frac{x^2}{1+16x^4}=\frac{x^2}{1+\left(4y^2\right)^2}\le\frac{y^2}{2.4y^2}=\frac{1}{8}\)

\(\frac{y^2}{1+16y^4}=\frac{y^2}{1+\left(4y^2\right)^2}\le\frac{y^2}{2.4y^2}=\frac{1}{8}\)

\(\Leftrightarrow\frac{x^2}{1+16x^4}+\frac{y^2}{1+16y^4}\le\frac{1}{4}\)

=> ĐPCM

Nguyễn Ngân	Hà
Xem chi tiết
Nguyễn Minh Quang
14 tháng 8 2021 lúc 20:27

ta có :

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{4+9+25}=\frac{152}{38}=4\)

vậy ta có \(x^2=16\Rightarrow\orbr{\begin{cases}x=4,y=-6,z=10\\x=-4,y=6,z=-10\end{cases}}\)

Khách vãng lai đã xóa
Park Soyeon
Xem chi tiết
Trần Đức Long
24 tháng 2 2017 lúc 21:45

câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)

vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)

Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)

Trần Đức Long
24 tháng 2 2017 lúc 22:13

câu 3 98

Park Soyeon
24 tháng 2 2017 lúc 22:23

Tks pạn nhìu @!