Cho các số x, y, z khác 0 thỏa mãn đồng thời và 1/x+1/y+1/z=2, . Tính giá trị của biểu thức P = ( x + 2y + z)2012
cho x+1/x=a. Tính x^7+1/x^7 theo a
Cho x, y, z khác 0 thỏa mãn đồng thời 1/x +1/y + 1/z =2 và 2/xy - 1/z^2 = 4 Tính giá trị của biểu thức p=(x+2y+z)^2018
Bài 1 :
Ta có :
\(x^7+\frac{1}{x^7}=\left(x^3+\frac{1}{x^3}\right)\left(x^4+\frac{1}{x^4}\right)-\left(x+\frac{1}{x}\right)\)
\(\left(x+\frac{1}{x}\right)=a\Leftrightarrow\left(x+\frac{1}{x}\right)^2=a^2\)
\(\Leftrightarrow x^2+\frac{1}{x^2}+2.x.\frac{1}{x}=a^2\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-x.\frac{1}{x}+\frac{1}{x^2}\right)\)
\(=a\left(x^2+\frac{1}{x^2}-1\right)=a\left(a^2-3\right)\)
\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2.x^2.\frac{1}{x^2}\)
\(=\left(a^2-2\right)^2-2=a^4-4a^2+4-2\)
\(=a^4-4a^2+2\)
\(\Rightarrow x^7+\frac{1}{x^7}=a.\left(a^2-3\right).\left(a^4-4a^2+2\right)-a\)
\(=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a\)
\(=a^7-4a^5+2a^3-3a^5+12a^3-6a-a\)
\(=a^7-7a^5+14a^3-7a\)
Bài 2 :
Ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)
\(\Rightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{z}=\frac{1}{y}+\frac{1}{z}=0\) vì \(\left(\frac{1}{x}+\frac{1}{z}\right)^2,\left(\frac{1}{y}+\frac{1}{z}\right)^2\ge0\)
\(\Rightarrow x=y=-z\)
\(\Rightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\Rightarrow-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)
\(\Rightarrow x=y=\frac{1}{2}\)
\(\Rightarrow x+2y+z=\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}=1\)
\(\Rightarrow P=1\)
cho 3 số x,y,z thỏa mãn đồng thời
\(3x-2y-2\sqrt{y+2012}+1=0\)
\(3y-2z-2\sqrt{z-2013}+1=0\)
\(3z-2x-2\sqrt{x-2}-2=0\)
tính giá trị của biểu thức P=\(\left(x-4\right)^{2011}+\left(y+2012\right)^{2012}+\left(z-2013\right)^{2013}\)
- Bạn làm được bài này chưa bạn?
đặt \(\hept{\begin{cases}A=3x-2y-2\sqrt{y+2012}+1=0\\B=3y-2z-.....\\C=3z-2x.....\end{cases}}.\)
vì a=b=c=0
Suy ra A+B+C=0
A+B+c= \(\left(x\right)+\left(y\right)+\left(z\right)-2\sqrt{y+2012}-2\sqrt{z-2013}-2\sqrt{x-2}\) " rút gọn làm tắt "
đến đây ta thêm 3-3 , 2012-2012 , 2013-2013 , 2-2 vào biểu thức rồi dùng hằng đẳng thức ta được
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2+2013-2012+2-3=0\)
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2=0\) rút gọn
\(\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y+2012}=1\\\sqrt{z-2013}=1\end{cases}}\)
thay vào P ta được
\(P=\left(3-4\right)^{2011}+\left(-2011+2012\right)^{2012}+\left(2014-2013\right)^{2013}\)
\(P=-1+1+1=1\)
cho 3 số x,y,z thỏa mãn \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)
tính giá trị của biểu thức\(A=x^{2010}-2011\cdot y^{2011}-z^{2012}\)
Cho các số x,y,z khác 0 thỏa mãn đồng thời \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=2 và \(\frac{2}{xy}\)-\(\frac{1}{z^2}\)=4.
Tính giá trị biểu thức: P=\(\left(x+2y+z\right)^{2019}\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)
Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)
=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)
=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)
\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)
Từ (1) và (2) suy ra
\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)
=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)
à thêm cái này nữa. Sorry viết thiếu
Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)
lúc đó \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)
Chi x y z khác 0 thỏa mãn
1/x+1/y+1/z=2 và 1/xy+1/z^2=4
Tính giá trị biểu thức A=(x+2y-z)_2017
Cho xyz khác 0 thỏa mãn: x^3y^3 + y^3z^3 + z^3x^3 = 3x^2y^2z^2
Tính giá trị của biểu thức: M = ( 1+ x/y )( 1 + y/z )( 1 + z/x )
3x²y²z² = x³y³ y³z³ z³x³
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3
Giá trị nhỏ nhất của biểu thức A=|x+1|^3+4 là..............
Biết x;y thỏa mãn |x+1|+|x-y+2|=0. Khi đó x^2+y^2+1 là..............
Giá trị lớn nhất của biểu thức A=6/|x+1|+3 là.............
Với n là số tự nhiên khác 0, khi đó giá trị biểu thức A=(1/4)^n-(1/2)^n/(1/2)^n-1 -(1/2)^n+2012 là..............
Cho x,y, z khác 0 và x-y-z=0. Tính giá trị biểu thức (1-z/x).(1-x/y).(1+y/z) là..................
AI TL GIÙM ĐI!!!!!!!!!!1 CẦN GẤP, NẾU ĐÚNG SẼ TICK CHO (KO CẦN TL HẾT, CHỈ CẦN ĐÚNG LÀ ĐC RỒI!!)
Cho các số x,y,z thỏa mãn x^2+2y^2+z^2-2xy-2y-4z+5=0.Tính giá trị biểu thức A=(x-1)^2020+(y-2)^2020+(z-3)^2020
x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0
<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0
<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z
Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )
Thay ( 1 ) vào A , ta được :
\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)
Vậy A = 2
Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)
Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)
cho ba số x,y,z thỏa mãn x2 +2y +1=y2 +2z+1=z2 +2x +1 =0 .Tính giá trị của biểu thức A=x2010 -2011.y2011 -z2012