Cho A = a + b + c + m + n + p ; B = ab + bc + ca - mn - np - pm ; C = abc + mnp . Biết a, b, c, m , n , p là các số nguyên dương và Cả B và C đều chia hết cho A. CMR A là 1 hợp số
Cho a+b+c=0. C/m M=N=P với:
M= a(a+b)(a+c)
N=b(b+c)(b+a)
P=c(c+a)(c+b)
\(M=a\left(a+b\right)\left(a+c\right)=a\left(a^2+ac+ba+bc\right)\)
\(=a^3+a^2c+a^2b+abc=a^2\left(a+b+c\right)+abc\)
\(=a^20+abc=abc\) (1)
\(N=b\left(b+c\right)\left(b+a\right)=b\left(b^2+ba+cb+ca\right)\)
\(=b^3+b^2a+b^2c+abc=b^2\left(a+b+c\right)+abc\)
\(=b^20+abc=abc\) (2)
\(P=c\left(c+a\right)\left(c+b\right)=c\left(c^2+cb+ac+ab\right)\)
\(=c^3+c^2b+c^2a+abc=c^2\left(a+b+c\right)+abc\)
\(c^20+abc=abc\) (3)
từ (1);(2)và(3) ta có : \(M=N=P=abc\)
vậy khi \(\left(a+b+c\right)=0\)thì \(M=N=P\) (đpcm)
cho a + b + c = 0 . CM : M = N = P M = a ( a + b ) ( a + c ) N = b ( b + c ) ( a + b ) P = c ( c + b ) ( a + c )
\(a+b+c=0\)
\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(M=a\left(a+b\right)\left(a+c\right)=a.\left(-c\right).\left(-b\right)=abc\)
\(N=b\left(b+c\right)\left(a+b\right)=b.\left(-a\right).\left(-c\right)=abc\)
\(P=c\left(b+c\right)\left(a+c\right)=c.\left(-a\right).\left(-b\right)=abc\)
\(\Rightarrow\)\(M=N=P\)
Giúp với mọi người ơi! Mai mình phải nộp rồi
Bài 1: Cho A= 2 . 4 . 6 . 8 . 10 . 12 + 40
a) C/m A chia hết cho 8 b) C/m A chia hết cho 5 c) C/m A chia hết cho 6
Bài 2: Tìm n thuộc N sao cho
a) n + 5 chia hết cho n b) 3n + 7 chia hết cho n
c) n + 7 chia hết cho n + 3 d) 3n + 9 chia hết cho n - 1
e) 5n + 3 chia hết cho 7 - 2n
Bài 3: Cho A= 3 + 3^3 + 3^5 + ... + 3^1992
a) C/m A chia hết cho 13
b) C/m A chia hết cho 40
Cho hai đường thẳng m, n
a) Vẽ điểm A sao cho A không thuộc m và không thuộc n
b) Vẽ điểm B sao cho B thuộc m và B không thuộc n
c) Vẽ điểm C sao cho C thuộc m và C thuộc n
Cho tứ giác $A B C D$. Xác định điểm $M, N, P$ sao cho a) $2 \overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=\overrightarrow{0}$.
b) $\overrightarrow{N A}+\overrightarrow{N B}+\overrightarrow{N C}+\overrightarrow{N D}=\overrightarrow{0}$.
c) $3 \overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}+\overrightarrow{P D}=\overrightarrow{0}$.
Cho a, b, c, d, m, n sao cho a<b<c<d<m<n. Chứng minh:
\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)
Từ:\(\hept{\begin{cases}a< c\\c< d\\m< n\end{cases}}\Rightarrow a+c+m< c+d+n\)
\(\Rightarrow2\left(a+c+n\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Tham khảo tại link nèy nhé bạn :https://olm.vn/hoi-dap/detail/84653011737.html
~Hok tốt~
Cho a+b+c=0, chứng minh M=N=P
M=a(a+b)(a+c); N=b(b+c)(b+a); P=c(c+a)(c+b)
a + b + c = 0 \(\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}M=a.\left(-c\right).\left(-b\right)=abc\\N=b.\left(-a\right).\left(-c\right)=abc\\P=c.\left(-b\right).\left(-a\right)=abc\end{cases}\Rightarrow M=N=P}\)
Ta có : a+b+c=0
Suy ra :a+b=-c ; a+c=-b và b+c=-a
Nên : M=a(a+b)(a+c)
=a.(-c).(-b)=abc (1)
N=b(b+c)(b+a)
=b.(-a).(-c)=abc (2)
Và : P=c(c+a)(c+b)
=c.(-b).(-a)=abc (3)
Từ (1)(2) và (3) suy ra : Đpcm
hơn 6.000.000 tại 70 quốc gia bao gồm cả Việt Nam. Kỳ thi ra đời nhằm nhân rộng niềm vui học Toán theo hướng phát triể
Cho a+b+c=0.chứng minh rằng M=N=P với:
M= a(a+b)(a+c) ; N= b(b+c)(b+a) ; P= c(c+a)(c+b)
Ta có: a+b+c=0
=>a+b=0-c
a+c=0-b
b+a=0-c
b+c=0-a
c+a=0-b
c+b=0-a
Lại có:
M=a(a+b)(a+c)=a(0-c)(0-b)=0.a.(0-b)-c.a.(0-b)=0-0.c.a+a.b.c=0-0+abc=abc
N=b(b+c)(b+a)=b(0-a)(0-c)=0.b.(0-c)-a.b.(0-c)=0-0.a.b+a.b.c=0-0+abc=abc
P=c(c+a)(c+b)=c(0-b)(0-a)=0.c.(0-a)-b.c.(0-a)=0-0.b.c+a.b.c=0-0+abc=abc
=> M=N=P=abc
Vậy M=N=P
Cho a+b+c=0.Chứng minh rằng M=N=P với :
M=a(a+b)(a+c) ; N=b(b+c)(b+a) ; P=c(c+a)(c+b)
Ta có: \(a+b+c=0\)
=> \(a+b=-c;a+c=-b;b+c=-a\)
Do đó:
\(M=a\left(a+b\right)\left(a+c\right)=a\left(-c\right)\left(-b\right)=abc\)
\(N=b\left(b+c\right)\left(b+a\right)=b\left(-a\right)\left(-c\right)=abc\)
\(P=c\left(c+a\right)\left(c+b\right)=c\left(-b\right)\left(-a\right)=abc\)
=> M=N=P ( = abc)
Ta có : a + b + c = 0
=> a + b = -c ; a + c = -b ; b + c = -a
Thế vào M, N, P :
=> M = a.(-c).(-b) = -abc
N = b.(-a).(-c) = -abc
P = c.(-b).(-a) = -abc
Vậy M = N = P.
Cho a + b + c = 0. CMR: M = N = P
M = a(a + b)(a + c)
N = b(b + c)(b + a)
P = c(c + a)(c + b)