S=1+1/3+1/9+1/27+.....+1/2187
S=1+1/3+1/9+1/27+...+1/2187
S=1+1/3+1/9+1/27+..+1/2187
S = 1 + 1/3 + 1/9 + 1/27 + ..................... + 1/2187
S = 1 + \(\frac{1}{3}\)+ \(\frac{1}{9}\)+ \(\frac{1}{27}\)+...+ \(\frac{1}{2187}\)
3S = 3 + 1 + \(\frac{1}{3}\)+ \(\frac{1}{9}\)+...+ \(\frac{1}{729}\)
3S - S = 3 - \(\frac{1}{2187}\)
2S = \(\frac{6560}{2187}\)
S = \(\frac{6560}{2187}\): 2
S = \(\frac{6560}{4374}\)
thay 1thành 3/3,1/3 thành 1/31,1/9 thành 1/32,1/27 thành 1/33,rồi cứ thế tiếp tục
xong rồi thì cộng lại như phân số
Bài 2: Tính nhanh
S = 1 + 1/3 + 1/9 + 1/27 + ..................... + 1/2187
S x 3 = 3 + 1 + 1/3 + 1/9 + 1/27 + ..................... + 1/729
S x 3 – S = 3 – 1/2187 = 6560/2187
Vậy S = 6560/2187 : 2 = 6560/4374
Tính hợp lý tổng sau
S=1+1/3+1/9+1/27+....+1/2187
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
\(2S=3-\frac{1}{3^7}\)
\(S=\frac{3-\frac{1}{3^7}}{2}\)
S= 1+ \(\frac{1}{3}\)+ \(\frac{1}{9}\)+...+ \(\frac{1}{729}\)+ \(\frac{1}{2187}\).
=> S= 1+ \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)+ \(\frac{1}{3^7}\).
=>3S= 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)+ \(\frac{1}{3^6}\).
=> 3S- S=( 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)+ \(\frac{1}{3^6}\))-( 1+ \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)+ \(\frac{1}{3^7}\)).
=> 2S= 3- \(\frac{1}{3^7}\).
=> 2S= 3- \(\frac{1}{2187}\).
=> 2S= \(\frac{6560}{2187}\).
=> S= \(\frac{6560}{2187}\): 2.
=> S= \(\frac{3280}{2187}\).
Vậy S= \(\frac{3280}{2187}\).
\(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+.....+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+....+\frac{1}{2187}\)
tính hợp lí\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+......+\frac{1}{2187}\)
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(\Rightarrow\)\(3S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(\Rightarrow\)\(3S-S=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
\(\Rightarrow\)\(2S=1-\frac{1}{3^7}\)
\(\Rightarrow\)\(S=\frac{1-\frac{1}{3^7}}{2}\)
\(S=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3S=1+\frac{1}{3}+...+\frac{1}{3^6}\)
\(3S-S=\left(1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
\(2S=1-\frac{1}{3^7}\)
\(S=\frac{1-\frac{1}{3^7}}{2}\)
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(\Rightarrow3S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(\Rightarrow3S-S=1-\frac{1}{3^7}\)
\(2S=1-\frac{1}{3^7}\)
\(\Rightarrow S=\frac{1-\frac{1}{3^7}}{2}\)
Tính hợp lí
P=78×31+78×24+78×17+22×72
S=1+1/3+1/9+1/27+...+1/2187
P = 78 × 31 + 78 × 24 + 78 × 17 + 22 × 72
P = 78 × (31 + 24 + 17) + 22 × 72
P = 78 × 72 + 22 × 72
P = 72 × (78 + 22)
P = 72 × 100
P = 7200
S = 1 + 1/3 + 1/9 + 1/27 + ... + 1/2187
3S = 3 + 1 + 1/3 + 1/9 + ... + 1/729
3S - S = (3 + 1 + 1/3 + 1/9 + ... + 1/729) - (1 + 1/3 + 1/9 + 1/27 + ... + 1/2187)
2S = 3 - 1/2187
2S = 6560/2187
S = 6560/2187 : 2
S = 6560/2187 × 1/2
S = 3280/2187