Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 29 dư 5 và chia 31 dư 28
Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 29 dư 5 và chia cho 31 dư 28 .
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
Gọi s cần tìm là a.
Ta có : a=29p+5; a=31q+28
Khi đó ta có: 29p+5 = 31q+28 ﴾*﴿
=> 29﴾p‐q﴿ = 2q+23
=> 28﴾p‐q﴿ + ﴾p‐q﴿ ‐ 1 = 2q +22
Vế phải chia hết cho 2 nên [﴾p‐q﴿‐1] cung chia hết cho 2
mà a là số tự nhiên nhỏ nhất nên [﴾p‐q﴿‐1] = 0
=> p = q+1 thay vào ﴾*﴿
ta được q = 3
=> p = 4.
=> a = 31*3+28 = 121
hay a = 4*29 + 5 = 121
Số cần tìm là 121
B1: tìm số tự nhiên a nhỏ nhất có 3 chữ số sao cho a chia cho 11 dư 5, chia cho 13 dư 8
B2: tìm số tự nhiên a nhỏ nhất biết rằng khi chia số a cho 29 dư 5 và chia cho 31 dư 28
Tìm một số tự nhiên nhỏ nhất, biết rằng khi chia số đó cho 29 thì dư 5 và khi chia cho 31 thì dư 28?
Tìm một số tự nhiên nhỏ nhất, biết rằng khi chia số đó cho 29 thì dư 5 và khi chia cho 31 thì dư 28
Tìm số tự nhiên nhỏ nhất,biết rằng khi chia số đó cho 29 dư 5,còn khi chia cho 31 thì dư 28.Tìm số đó
c1
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
c2
Bài giải:
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
tk nha mk trả lời đầu tiên đó!!!
Gọi số tự nhiên cần tìm là A Chia cho 29 dư 5 nghĩa là:
A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất Do đó p – q = 1
=> 2q = 29 – 23 = 6 => q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 có nghĩa là:A= 29p + 5 (p \(\varepsilon\)N)
Tương tự : A = 31p +28 (p \(\varepsilon\)N)
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là:A = 31q + 28 = 31. 3 + 28 = 121
Tìm số tự nhiên nhỏ nhất sao cho số đó chia 29 dư 5; chia 31 dư 28
Chia cho 29 dư 5 nghĩa là:S=29r+5 (r thuộc N)
Tương tự S=31p+28 (p thuộc N)
Vì29r+5=31p+28=>29(r-p)=2p+23
ta thấy2p+23 là số lẻ=>29(r-p) cũng là số lẻ=>r-p>=1
Theo giả thieetsS nhỏ nhất=>p nhỏ nhất(A=31p+28)
2p=>29(r-p)-23 nhỏ nhất
=>r-p nhỏ nhất
Do đó r-p=1=>2p=29-23=6
=>p=3
Vậy số cần tìm là:A=31p+28=31.3+28=121
Tìm số tự nhiên nhỏ nhất sao cho số đó chia 31 dư 28, chia 29 dư 5.
Tìm số tự nhiên nhỏ nhất,biết rằng khi chia số đó cho 29 dư 5,còn khi chia cho 31 thì dư 28.
Gọi số cần tìm là a
Thương khi chia 29 là x
Thương khi chia 31 là y
Ta có: a=29.x.5=31.y+28(nhỏ nhất)
29.x =31.y+23(cùng bớt đi 5 đơn vị)
29.x-29.y=2.y+23
29.(x-y)=2.y+23 lớn hơn 0 suy ra x lớn hơn y
TH1: Nếu y=1 thì: 2.y+23=29(bỏ x-y vì x-y nhỏ nhất suy ra hiệu x-y =1)
2.y =6
y=6:2
y=3
Suy ra x=3+1
x=4(chọn)
Thử lại:29.x+5=129.4+5=121
31.y+28=31.3+28=121
CHÚC BẠN HỌC TỐT NHA
Tìm số tự nhiên nhỏ nhất mà khi chia số đó cho 29 thì dư 5 còn khi chia số đó ch0 31 dư 28