Chứng minh rằng : ( 2n+1) và (2n+3) là 2 số nguyên tố cùng nhau (n€N)
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Chứng minh rằng số tự nhiên n là các số nguyên tố cùng nhau:
a) 2n+1 và 3n+2
b)2n+2 và 5n+3 c) 3n+1 và 4n+1
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
Chứng minh rằng số n+3 và 2n+5 với n thuộc \(N\)là 2 số nguyên tố cùng nhau ?
Gọi \(ƯCLN\left(n+3,2n+5\right)\) là \(d\left(d\in N^{\circledast}\right)\)
\(=>n+3⋮d;2n+5⋮d\)
\(=>2\left(n+3\right)⋮d;2n+5⋮d\)
\(=>2n+6⋮d;2n+5⋮d\)
\(=>\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(=>1⋮d\)
\(=>d=1\)
Vậy n+3 và 2n+5 là 2 số nguyên tố cùng nhau với \(n\in N\)
Gọi là
Vậy n+3 và 2n+5 là 2 số nguyên tố cùng nhau với
1.Tìm số nguyên tố p sao cho p+3 cũng là số nguyên tố
2. Cho n thuộc N. Chứng minh rằng hai số n+1 và 2n+3 là hai số nguyên tố cùng nhau
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
1.Cho A=2n-1; B=n(n-1) Chứng minh rằng A và B nguyên tố cùng nhau
2. Cho A và B là 2 số nguyên tố cùng nhau.
Chứng minh A=5a+3b và B=13a+8b là 2 số nguyên tố cùng nhau
Chứng minh rằng: 2 số 2n+3 và 3n+5 (n thuộc N) là 2 số nguyên tố cùng nhau
Cho ƯCLN(n;n+1)=1. Chứng minh rằng n+1 và 2n+1 là 2 số nguyên tố cùng nhau
Gọi ƯCLN(n+1;2n+1) là d.( d nguyên dương)
Có n+1 chia hết cho d, 2n+1 chia hết cho d nên (2n+1) - (n+1) chia hết cho d
Suy ra n chia hết cho d nên d là ƯC(n+1;n)
Mà ƯCLN(n;n+1)=1 nên d=1 suy ra n+1 và 2n+1 nguyên tố cùng nhau
Gọi d là ƯCLN(n+1,n+2)
=>n+1\(⋮\)d(1)
=>n+2\(⋮\)d(2)
Từ(1) và(2) suy ra(n+2)-(n+1)\(⋮\)d
=>n+2-n-1\(⋮\)d
=>1\(⋮\)d
=>d\(\in\)Ư(1)={1}
=>d=1
Vậy n+1 và n+2 nguyên tố cùng nhau
Chúc bn học tốt
Gọi ƯCLN(n+1,2n+1)=d
n+1 chia hết cho d =>2(n+1) chia hết cho d =>2n+2 chia hết cho d
2n+1 chia hết cho d
=> 2n+2-(2n+1) chia hết cho d
=>1 chia hết cho d
=> d=1
=>n+1 và 2n+1 nguyên tố cùng nhau
Chứng minh rằng: Với mọi số tự nhiên n, các số sau là các số nguyên tố cùng nhau:
a) n + l; n + 2;
b) 2n + 2; 2n + 3;
c) 2n + 1; n + l;
d) n + l; 3n + 4.