Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}+\frac{1}{2013^2}\)
Hãy chứng tỏ rằng A<1
Cho A = \(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{2012^2}+\frac{1}{2013^2}\) . Hãy chứng tỏ rằng A<1
mọi người giúp em giải bài toán này với ạ
A = 1/2.2 + 1/3.3 +.......+ 1/2013.2013
A < 1/1.2 + 1/2.3 +........+ 1/2012.2013
A < 1 - 1/2 + 1/2 - 1/3 +......+ 1/2012 - 1/2013
A < 1 - 1/2013
A < 2012/2013 < 1
=> A < 1 (đpcm)
Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)
Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
Hãy so sánh S và \(\frac{1}{2}\)
Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)
S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)
Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng A>1
Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Bài 6: Chứng tỏ rằng
D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1
Bài 7:
C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)
Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm
Trần Quốc An: Em hãy tách bài ra để dễ trả lời hơn nhé. Em gửi từng bài đi để cô hướng dẫn :)
Cho S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\) Chứng tỏ S < 1
S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\)
2S = \(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\)
S = 2S - S = \(\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\right)\) - \(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\right)\)
S = 1 - \(\frac{1}{2013}\)
Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1
=> S < 1 (đpcm)
S=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)
2S=\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
S=2S-S=(\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\))-(\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\))
S=1-\(\frac{1}{2013}\)
Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1
=>S<1
Cho S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\) Chứng tỏ S < 1
Giả sử có tấm bìa diện tích 1.
Ta cắt ra 1/2 tấm bìa, lấy đi 1 phần, rồi lại cắt ra 1/2 tấm còn lại (tức là 1/4), rồi lấy đi một phần...
Cứ làm như vậy 2013 lần thì ta đã lấy đi một diện tích \(S\), nhưng vẫn còn một góc bìa chưa bị lấy đi.
Vậy \(S< 1\)
So sánh P và Q biết : P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010+2011+2012/ 2011 +2012+2013
Chứng tỏ N < 1 với N = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}
a) A = 1+\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..........+\frac{1}{100^2}\)
Chứng minh rằng A<2
b) B =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+................+\frac{1}{2012^2}\)
Chứng minh rằng \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A< 1+\left(1-\frac{1}{100}\right)\Rightarrow A< 1+1-\frac{1}{100}\Rightarrow A< 2-\frac{1}{100}\Rightarrow A< 2\left(ĐPCM\right)\)
b, \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2011\cdot2012}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow B< 1-\frac{1}{2012}\Rightarrow B< 1\left(1\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{2013}\Rightarrow\frac{1}{2}-\frac{1}{2013}< B\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
a)A=1+1/22+1/32+....+1/1002
<1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+...+1/99-1/100=2-1/100=199/200<2
b)B=1/22+1/32+...+1/20122
<1/1.2+1/2.3+...+1/2011.2012=1-1/2+1/2-1/3+...+1/2011-1/2012=1-1/2012=2011/2012
1/2-1/2013=2011/4026<2011/2012<1
Bài 1:
a. Chứng minh \(\frac{B}{A}\)là một số nguyên, biết rằng:
A =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\)và B =\(\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\)
\(\frac{B}{A}=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)
\(=\frac{\left(\frac{2011}{2}+1\right)+\left(\frac{2010}{3}+1\right)+...+\left(\frac{1}{2012}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)
\(=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+....+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}=2013\)
Chứng tỏ rằng A<1 biết
A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{2010^2}+\frac{1}{2011^2}+\frac{1}{2012^2}<1\)
Tính giá trị biểu thức :
\(A=\frac{\frac{1}{2013}+\frac{2}{2012}+\frac{3}{2011}+...+\frac{2011}{3}+\frac{2012}{2}+\frac{2013}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}}\)
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Đừng tin bn Thạch bạn ấy nói dối đấy
Chuẩn 100% luôn tik nha