Cho n \(\in\) N*, n > 1. Chứng tỏ rằng: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\) không là một số tự nhiên.
Cho n ∈ N *. Chứng tỏ rằng: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) Không phải là một số tự nhiên
Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\left(1\right)\)
Ta lại có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{n.n}\)
\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\left(2\right)\)
Từ (1) và (2) : \(\Rightarrow1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)
\(\Rightarrowđpcm\)
k cho
mk nha cảm ơncác bn nhé!!!!
Ta có \(\frac{1}{2^2}=\left(\frac{1}{2}\right)^2>0;\frac{1}{3^2}=\left(\frac{1}{3}\right)^2>0;...;\frac{1}{n^2}=\left(\frac{1}{n}\right)^2>0\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>0\)
=> \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\)(1)
Lại có \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}=1+\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{n.n}\)
\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(=2-\frac{1}{n+1}< 2\)
=> \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}< 2\)(2)
Từ (1) và (2) => \(1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)
=> \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)không là 1 số tự nhiên
Chi n thuộc N chứng tỏ rằng \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\) không phải là 1 số tự nhiên
Cho n thuộc N sao, chứng tỏ :
\(\frac{1}{1^2}\)+\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)không phải là một số tự nhiên
Đặt A = 1/1^2+1/2^2+.....+1/n^2
Có : A = 1+1/2^2+1/3^2+.....+1/n^2 > 1 (1)
Lại có : A < 1 + 1/1.2 + 1/2.3 + ........ + 1/(n-1).n
= 1 + 1 - 1/2 + 1/2 - 1/3 + ....... + 1/n-1 - 1/n
= 2 - 1/n < 2 (2)
Từ (1) và (2 => 1 < A < 2
=> A ko phải là 1 số tự nhiên
Tk mk nha
Đặt A = 1/1^2+1/2^2+.....+1/n^2
Có : A = 1+1/2^2+1/3^2+.....+1/n^2 > 1 (1)
Lại có : A < 1 + 1/1.2 + 1/2.3 + ........ + 1/(n-1).n
= 1 + 1 - 1/2 + 1/2 - 1/3 + ....... + 1/n-1 - 1/n
= 2 - 1/n < 2 (2)
Từ (1) và (2 => 1 < A < 2
=> A ko phải là 1 số tự nhiên
Chứng minh rằng với số tự nhiên n > 2 thì \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)không là số tự nhiên
Chứng tỏ :
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...........+\frac{1}{\left(2n\right)^2}\)
Không phải là số tự nhiên ( với \(n\in N\))
Giúp tớ với tớ cần gấp
Cho n là số tự nhiên khác 0
Chứng minh rằng :
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)không là số tự nhiên
Ta có: A > 1 (dĩ nhiên)
A\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{n}=1+\frac{1}{1}-\frac{1}{n}=2-\frac{1}{n}<2\)Nên 1 < A < 2 nên A không phải là số tự nhiên
Bài 1
Cho S = \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\)
Hãy so sánh S với 1/2 và 1
Bài 2
Cho: M= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{99^2}.\)
Chứng tỏ: M không thể có giá trị là số nguyên.
Bài 3: chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n:
a,\(\frac{n+1}{2n+3}\)
b,\(\frac{15n+2}{5n-1}\)
c,\(\frac{n^3+2n}{n^4+3n^2+1}\)
Bài 4
Cho: A= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\)
Chứng tỏ: A không thể co \s giá trị là số nguyên.
Ai làm được hết mình sẽ cho 3 tick nhé! Ai làm xong trước mk cũng cho 3 tick( Phải đúng và hết)
Giúp với mai phải nộp rùi!
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S< \frac{1}{50}+\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)(50 số hạng \(\frac{1}{50}\))
\(\Rightarrow S< \frac{1}{50}.50=1\)
Vậy S < 1 (đpcm)
Bài 1 :Chứng tỏ rằng
D=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)
Bài 2 :Chứng minh rằng \(\forall n\in Z\left(n\ne0,n\ne1\right)\)thì \(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)không phải số nguyên
1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)
=> còn lại thì bạn có thể tự chứng minh
1:cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)(với a,b,c\(\ne\)0;b\(\ne\)c) chứng minh rằng\(\frac{a}{b}=\frac{a-c}{c-b}\)
2: cho số tự nhiên n,chứng tỏ A=\(9^{n+2}+3^{n+2}-9^n+3^n⋮10\)