Đặt \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\Rightarrow A>1\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow A< 2-\frac{1}{n}< 2\)
\(\Rightarrow1< A< 2\Rightarrow A\) nằm giữa 2 số tự nhiên liên tiếp nên A không phải là 1 số tự nhiên