1. TÌM X
\(\frac{x}{2}+\frac{x}{3}+\frac{x}{4}=\frac{-13}{12}\)
Tìm x biết:
a)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b)\(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)
Nên x + 1 = 0 => x = -1
b) \(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)
\(\Leftrightarrow\frac{x+1}{14}+1+\frac{x+2}{13}+1=\frac{x+3}{12}+1+\frac{x+4}{11}+1\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)
\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)
Vì \(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\ne0\)
Nên x +15 = 0 => x = -15
a,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)-\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)=0\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}>\frac{1}{13};\frac{1}{11}>\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}>\frac{1}{13}+\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
b, Bạn cộng thêm 1 vào \(\frac{x+1}{14};\frac{x+1}{13};\frac{x+1}{12};\frac{x+1}{11}\)Mội bên phân số 1 đơn vị rồi áp dụng như bài 1
\(a)\) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
Nên \(x+1=0\)
\(\Rightarrow\)\(x=-1\)
Vậy \(x=-1\)
Chúc bạn học tốt ~
Tìm x biết \(\frac{x+1}{12}+\frac{x+2}{13}=\frac{x+3}{14}+\frac{x+4}{15}\)
\(\frac{x+1}{12}+\frac{x+2}{13}=\frac{x+3}{14}+\frac{x+4}{15}\) .Trừ 1 ở mỗi hạng tử của 2 vế ,ta có :
\(\frac{x-11}{12}+\frac{x-11}{13}=\frac{x-11}{14}+\frac{x-11}{15}\Rightarrow\left(\frac{1}{12}+\frac{1}{13}\right)\left(x-11\right)=\left(\frac{1}{14}+\frac{1}{15}\right)\left(x-11\right)\)
\(\Rightarrow\left[\left(\frac{1}{12}+\frac{1}{13}\right)-\left(\frac{1}{14}+\frac{1}{15}\right)\right]\left(x-11\right)=0\)
\(\frac{1}{12}>\frac{1}{14};\frac{1}{13}>\frac{1}{15}\Rightarrow\frac{1}{12}+\frac{1}{13}>\frac{1}{14}+\frac{1}{15}\Rightarrow\left(\frac{1}{12}+\frac{1}{13}\right)-\left(\frac{1}{14}+\frac{1}{15}\right)\ne0\)
\(\Rightarrow x-11=0\Rightarrow x=11\)
\(\frac{x+1}{12}+\frac{x+2}{13}=\frac{x+3}{14}+\frac{x+4}{15}\)
\(\Leftrightarrow\frac{x+1}{12}-1+\frac{x+2}{13}-1=\frac{x+3}{14}-1+\frac{x+4}{15}-1\)
\(\Leftrightarrow\frac{x-11}{12}+\frac{x-11}{13}=\frac{x-11}{14}+\frac{x-11}{15}\)
\(\Leftrightarrow\frac{x-11}{12}+\frac{x-11}{13}-\frac{x-11}{14}-\frac{x-11}{15}=0\)
\(\Leftrightarrow\left(x-11\right)\left(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\right)=0\)
Mà: \(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\ne0\)
\(\Rightarrow x-11=0\Rightarrow x=11\)
CAU 1)\(\frac{X+Y}{z}=\frac{y+z}{x}=\frac{x+z}{y}\)
Khi đó x+y=kz Khi đó K=
CAU 2)Tìm X biết :
\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}+\frac{x+2}{12^{12}}+\frac{x+2}{13^{13}}\)
X =
CAU 3)tÍNH
\(S=\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{20}+\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{21}{20}=\)
Tìm x biết
a) x+2x+3x+4x+...+100x=-213
b)\(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
c)3(x-2)+2(x-1)=10
d)\(\frac{x+1}{3}=\frac{x-2}{4}\)
e)\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
f)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
a) x + 2x + 3x + ... +100x = -213
=> x . (1 + 2 + 3 +... + 100) = - 213
=> x . 5050 = -213
=> x = - 213 : 5050
=> x = -213/5050
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
=> \(\frac{1}{2}x-\frac{1}{4}x=\frac{1}{3}-\frac{1}{6}\)
=> \(x.\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{6}\)
=> \(x.\frac{1}{4}=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{1}{4}\)
=> \(x=\frac{2}{3}\)
c) 3(x-2) + 2(x-1) = 10
=> 3x - 6 + 2x - 2 = 10
=> 3x + 2x - 6 - 2 = 10
=> 5x - 8 = 10
=> 5x = 10 + 8
=> 5x = 18
=> x = 18:5
=> x = 3,6
d) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> \(4\left(x+1\right)=3\left(x-2\right)\)
=>\(4x+4=3x-6\)
=> \(4x-3x=-4-6\)
=> \(x=-10\)
Tìm x biết: \(\frac{x+4}{10}+\frac{x+3}{11}=\frac{x+2}{12}+\frac{x+1}{13}\)
(x+4/10 + 1) + (x+3/11 +1) = (x+2/12 +1) + (x+1/13 +1)
(x+4/10 + 1) + (x+3/11 +1) - (x+2/12 +1) - (x+1/13 +1)=0
x+14/10 + x+14/11 - x+14/12 - x+14/13=0
x+14.(1/10 + 1/11 - 1/12 - 1/13)=0
1/10>1/11>1/12>1/13 nên dễ thấy 1/10+ 1/11 - 1/12 - 1/13 khác 0
=> x+14=0
x= -14
bài 1 tìm x biết
a, x=\(\frac{1}{36}+\frac{-3}{4}\)
b,x=\(\frac{2}{5}+\frac{1}{4}\)
c, x=\(\frac{1}{12}+\frac{3}{4}+\frac{-2}{9}\)
d, x,=\(\frac{1}{13}+\frac{-13}{26}\)
e, \(\frac{x}{15}=\frac{5}{6}+\frac{-4}{5}\)
Tìm x:
\(\frac{\left(13\frac{2}{9}-15\frac{2}{3}\right)\cdot\left(30^2-5^4\right)}{\left(18\frac{3}{7}-17\frac{1}{4}\right)\cdot\left(25-12\cdot5^2\right)}\cdot x=\frac{\frac{2}{11}+\frac{3}{13}+\frac{4}{15}+\frac{5}{17}}{4\frac{1}{11}+\frac{5}{13}+\frac{9}{15}+\frac{13}{17}}\)
Tìm x biết:
a) \(\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)
b) \(\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2}{2018}+\frac{x+1}{2019}\)
a) \(\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)
\(\Leftrightarrow\frac{x+2}{12}+\frac{x+2}{13}-\frac{x+2}{14}-\frac{x+2}{15}=0\)
\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\right)=0\)
Vì \(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}>0\)
\(\Rightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
b) \(\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2}{2018}+\frac{x+1}{2019}\)
\(\Leftrightarrow\frac{x+4}{2016}+1+\frac{x+3}{2017}+1=\frac{x+2}{2018}+1+\frac{x+1}{2019}+1\)
\(\Leftrightarrow\frac{x+2020}{2016}+\frac{x+2020}{2017}-\frac{x+2020}{2018}-\frac{x+2020}{2019}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)=0\)
Vì \(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}>0\)
\(\Rightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
a) \(\left(x+2\right)\left(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\right)=0\)
=>\(x+2=0\)
=>\(x=-2\)
nếu có sai thì mong bn thông cảm nha
Tìm số hữu tỉ x , biết rằng
e,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
f, \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)