Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thúy Ngân
Xem chi tiết
ductai
6 tháng 6 2018 lúc 13:58

not biết làm

Team Free Fire 💔 Tớ Đan...
5 tháng 12 2019 lúc 22:22

Tìm giá trị nhỏ nhất của S a b c a 2b c Giải: Dự đoán a=2,b=3,c=4 12 18 ... 18 16 4 S 4a 4b 4c a 2b 3c 3a 2b c ... 3 xy yz zx x2 y2 z2 Bài 11 Cho x, y  hai số thực không âm thay đổi. ..... 2 2 Bài 36 Cho a,b,c là các số thuộc 1; 2 thỏa mãn điều kiện a2+b2+c2 = 6.

Khách vãng lai đã xóa
Tiêu Chiến
Xem chi tiết
Thu Đào
Xem chi tiết
Lưu Nguyễn Hà An
11 tháng 8 2023 lúc 14:13

Tham khảo nhé:

�=5�+4�

a)

Để  chia hết cho 2 thì 5�  2 và 4�  2.
mà 5�  2 thì   2

còn 4�  2 thì luôn đúng.

Vậy để   2 thì   2, hay �={2�,�∈�} và �∈�

b)

Để  chia hết cho 5 thì 5�  5 và 4�  5.
mà 5�  5 thì luôn đúng

còn 4�  2 thì   5.

Vậy để   5 thì   5, hay �={5�,�∈�} và �∈�

c)

Để  chia hết cho 10 thì 5�  10 và 4�  10.
mà 5�  10 thì   2

còn 4�  10 thì   5.

Vậy để   10 thì   2 và   5,

hay �=2�,�=5ℎ;�,ℎ∈�

Giải thích:

Số chia hết cho 2 là số chẵn có dạng 2�,�∈�

Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5�,�∈�

Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là 

Lưu Nguyễn Hà An
11 tháng 8 2023 lúc 14:14

THAM KHẢO nhé:

=5+4

a)

Để  chia hết cho 2 thì 5  2 và 4  2.
mà 
5  2 thì   2

còn 4  2 thì luôn đúng.

Vậy để   2 thì   2, hay ={2,} và 

b)

Để  chia hết cho 5 thì 5  5 và 4  5.
mà 
5  5 thì luôn đúng

còn 4  2 thì   5.

Vậy để   5 thì   5, hay ={5,} và 

c)

Để  chia hết cho 10 thì 5  10 và 4  10.
mà 
5  10 thì   2

còn 4  10 thì   5.

Vậy để   10 thì   2 và   5,

hay =2,=5;,

Giải thích:

Số chia hết cho 2 là số chẵn có dạng 2,

Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5,

Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là 

 

Lê Hà Phương
Xem chi tiết
alibaba nguyễn
1 tháng 9 2016 lúc 11:12

Ta có \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\)\(\ge\)\(\sqrt{2^2+\left(a^2+b^2\right)^2}\)(1)

Ta lại có \(\frac{a^2+b^2}{2}\ge ab\)

\(\frac{a^2+1}{2}\ge a\)

\(\frac{b^2+1}{2}\ge b\)

Từ đó => a+ b\(\ge\)a + b + ab - 1 = \(\frac{1}{4}\)

Thế vào 1 ta được P \(\ge\)\(\frac{\sqrt{65}}{4}\)

Nguyễn Thị Thùy Dương
1 tháng 9 2016 lúc 11:30

\(\frac{9}{4}=\left(a+1\right)\left(b+1\right)\le\frac{\left(a+1\right)^2+\left(b+1\right)^2}{2}=\frac{2\left(a^2+1\right)+2\left(b^2+1\right)}{2}=a^2+b^2+2.\)

\(\Rightarrow a^2+b^2\ge\frac{1}{4}\)

\(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\left(\frac{1}{4}\right)^2}=\frac{\sqrt{17}}{2}\)

Minh Anh
1 tháng 9 2016 lúc 13:12

mincopxki nhé chứng minh trên cơ sở của bunhia và dấu bằng của nó cũng là bunhia

Hoàng Thị Phương Ly
Xem chi tiết
Nguyễn Phương Mai
18 tháng 3 2020 lúc 21:28

cái này mik chịu, mik mới có lớp 7

Khách vãng lai đã xóa
Trần Phúc Khang
19 tháng 3 2020 lúc 11:23

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)

Khách vãng lai đã xóa
Trần Phúc Khang
19 tháng 3 2020 lúc 11:31

2,     \(T=\frac{x}{1-yz}+\frac{y}{1-xz}+\frac{z}{1-xy}\)

Áp dụng cosi ta có \(yz\le\frac{y^2+z^2}{2}\)

=> \(\frac{x}{1-yz}\le\frac{x}{1-\frac{y^2+z^2}{2}}=\frac{2x}{2-y^2-z^2}=\frac{2x}{1+x^2}\)

Lại có \(x^2+\frac{1}{3}\ge2x\sqrt{\frac{1}{3}}\)

=> \(\frac{x}{1-yz}\le\frac{2x}{\frac{2}{3}+2x\sqrt{\frac{1}{3}}}=\frac{x}{\frac{1}{3}+x\sqrt{\frac{1}{3}}}\le\frac{x.1}{4}\left(\frac{1}{\frac{1}{3}}+\frac{1}{x\sqrt{\frac{1}{3}}}\right)=\frac{1}{4}.\left(3x+\sqrt{3}\right)\)

Khi đó \(T\le\frac{1}{4}.\left(3x+3y+3z+3\sqrt{3}\right)\)

Mà \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=\sqrt{3}\)

=> \(T\le\frac{6\sqrt{3}}{4}=\frac{3\sqrt{3}}{2}\)

Vậy \(MaxT=\frac{3\sqrt{3}}{2}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Khách vãng lai đã xóa
Full Moon
Xem chi tiết
Đen đủi mất cái nik
21 tháng 10 2018 lúc 20:07

Ta có:

\(M=\frac{19a+3}{1+b^2}+\frac{19b+3}{c^2+1}+\frac{19c+3}{a^2+1}\)

\(=19a-\frac{19ab^2-3}{b^2+1}+19b-\frac{19bc^2-3}{c^2+1}+\frac{19ca^2-3}{a^2+1}\)

\(\ge19\left(a+b+c\right)-\frac{19ab^2-3}{2b}-\frac{19bc^2-3}{2c}-\frac{19ca^2-3}{2a}\)

\(=19\left(a+b+c\right)-19\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge19.3-\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Lại có:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge3\frac{\left(1+1+1\right)^2}{ab+bc+ca}=\frac{3.9}{3}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

\(\Rightarrow M\ge\frac{19.3}{2}+\frac{3}{2}.3=33\)

\(\)

roronoa zoro
Xem chi tiết
TL
Xem chi tiết
Nguyễn Tất Đạt
29 tháng 6 2018 lúc 8:30

Từ 2 giả thiết: \(a+b+c=2018;\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{6}{2018}\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2018.6}{2018}=6\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=6\)

\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=6\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=3\)

Vậy giá trị của biểu thức đó là 3.

Nguyen Thi Thanh Huyen
Xem chi tiết