cho x+y=2 tìm giá trị nhỏ nhất của (x^2+1)(y^2+1)+10
mn giup mik bai nay vs a!!!
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
1.Tìm giá trị nhỏ nhất của biểu thức A=
|x-2016|+2017
|x-2016|+2018
2. Tìm số nguyên x,y sao cho x-2xy+y=0
Giúp vs mik tick cho
\(\left|x-2016\right|+2017\)
giá tị nhỏ nhất là 2017 vì \(\left|x-2016\right|\)có giá trị tuyêt đối nên lớn hơn hoặc bằng 0
mà ở ngoài lại là +2017 nên biểu thức có giá trj = 0 suy ra 0+2017 =2017
biểu thức tiếp
= 2018
tìm giá trị nhỏ nhất của C=2x^2-y tại x+y=2
giúp vs mik đg vội lắm
Giúp mn vs :<
Cho x,y là các số thực dương thỏa mãn \(x+\dfrac{1}{y}< =1\). Tìm giá trị nhỏ nhất của \(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
cho x và y là 2 số thực dương thỏa mãn: 3x+y≤4.
Tìm giá trị nhỏ nhất của A=1/x+1/√xy giúp mik với ạ=))
\(A=\dfrac{1}{x}+\dfrac{2}{2\sqrt{xy}}\ge\dfrac{1}{x}+\dfrac{2}{x+y}=2\left(\dfrac{1}{2x}+\dfrac{1}{x+y}\right)\ge2.\dfrac{4}{2x+x+y}=\dfrac{8}{3x+y}\ge\dfrac{8}{4}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
cho x,y là các số nguyên:
a) Tìm giá trị nhỏ nhất của A=|x+2|+50
b) Tìm giá trị nhỏ nhất của B=|x-100|+| y+200|-1
c) Tìm giá trị lớn nhất của 2015-|x+5|
Nhanh lên nhé, mik đang cần😥😥😥
Ai nhanh mik tick👍👍👍😍😍😍
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
b, ta có : \(x+y=1=>2x+2y=2\)
\(B=\dfrac{1}{x^2+y^2}+\dfrac{3}{4xy}=\dfrac{4}{4x^2+4y^2}+\dfrac{6}{8xy}\)\(\ge\dfrac{\left(2+\sqrt{6}\right)^2}{\left(2x+2y\right)^2}\)
\(=\dfrac{\left(2+\sqrt{6}\right)^2}{2^2}=\dfrac{5+2\sqrt{6}}{2}\)=>\(B\ge\dfrac{5+2\sqrt{6}}{2}\)
=>\(MinB=\dfrac{5+2\sqrt{6}}{2}\)
a) Cho x – y = 3 tìm giá trị của biểu thức: B = |x – 6| + |y + 1|
b) Cho x – y = 2 tìm giá trị nhỏ nhất của biểu thức: C = |2x + 1| + |2y + 1|
c) Cho 2x + y = 3 tìm giá trị nhỏ nhất của biểu thức: D = |2x + 3| + |y + 2| + 2
Giúp mình với chiều nay mình phải nộp rồi. Cảm ơn các bạn!
Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),
a) Ta có : \(x-y=3\Rightarrow x=3+y\).
Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)
\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
\(\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
b) Ta có : \(x-y=2\Rightarrow x=2+y\)
Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)
\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)
\(\ge\left|-2y-5+2y+1\right|=4\)
Các câu khác tương tự nhé em !
Làm nốt câu c
Bài giải
c, Ta có :
\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)
Dấu " = " xảy ra khi \(2x+y=3\)
Vậy \(\text{Khi }2x+y=3\text{ }Min_D=10\)
Bài 1: Tìm giá trị nhỏ nhất:
A = |x-3| + 2
B = |x+y| + |x-3| + 2
Bài 2: Tìm giá trị nhỏ nhất:
A = - |x+1| + 3
B = - |x+2| - 1
Bài 3: Tìm x,y để:
|x+1| + |x+y-3| = 0
Đaq cần gấp m.n dúp vs ạk
1) \(B=\left|x+y\right|+\left|x-3\right|+2\)
Ta có: \(\orbr{\begin{cases}\left|x+y\right|\ge0\forall x;y\\\left|x-3\right|\ge0\forall x\end{cases}}\Rightarrow\left|x+y\right|+\left|x-3\right|+2\ge2\forall x;y\)
\(B=2\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+y=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\y=-x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
KL:............................