Tính
M=1+1/2(1+2)+1/3(1+2+3)
Tính
M = 7.8+8.9+9.10+...+19.20
CMR: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{20^2}< 1\)
\(TínhM=\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{3}{n-3}+\frac{2}{n-2}+\frac{1}{n-1}\)
1.Thực hiện phép tính
M= 1+(-2)+3+(-4)+...+2001+(-2002)+2003
Từ 1 đến 2002 sẽ có:
\(\left(2002-1\right):1+1=2002\left(số\right)\)
=>Sẽ có 2002/2=1001 cặp có tổng là -1 là (1;-2);(3;-4);...;(2001;-2002)
M=1+(-2)+3+(-4)+...+2001+(-2002)+2003
=(1-2)+(3-4)+...+(2001-2002)+2003
=2003-1*1001
=2003-1001
=1002
Giúp vs
Bài 1. Tìm x biết
a) (x+3)3=640000
b) 275.3x=910
c) (1/33.9).3x=27
d) 85.4x=221
Bài 2. Tính
M=22010-(22009+22008+...+21+20)
Bài 5. Thực hiện phép tínhM =1+ (−2) + 3+ (−4) +...+ 2019 + (−2020) + 2021
Help nha
Hứa tick cho 10 lần
Đa tạ
:)M=\(\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+...+\left[2019+\left(-2020\right)\right]+2021\)
M=(-1)+(-1)+...+(-1)+2021
M=1010.(-1)+2021
M=(-1010)+2021
M=1011
Cho x=\(\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}};y=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}.TínhM=xy\left(x^2-y^2\right)\)
Ta có:\(x=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}=\frac{2}{\left(\sqrt[3]{4}\right)^2+\sqrt[3]{4}.\sqrt[3]{2}+\left(\sqrt[3]{2}\right)^2}=\frac{2\left(\sqrt[3]{4}-\sqrt[3]{2}\right)}{\left[\left(\sqrt[3]{4}\right)^2+\sqrt[3]{4}.\sqrt[3]{2}+\left(\sqrt[3]{2}\right)^2\right]\left(\sqrt[3]{4}-\sqrt[3]{2}\right)}\)
\(=\sqrt[3]{4}-\sqrt[3]{2}\).
Tương tự
\(y=\sqrt[3]{4}+\sqrt[3]{2}\). Thay x, y vào ta tính được:
\(M=8\sqrt[3]{4}-16\sqrt[3]{2}\)
Tính:
2 - 1 = 3 - 1 = 1 + 1 = 1 + 2 =
3- 1 = 3 - 2 = 2 - 1 = 3 - 2 =
3 -2 = 2 - 1 = 3 - 1 = 3 - 1 =
2 - 1 = 1 3 - 1 = 2 1 + 1 = 2 1 + 2 = 3
3 - 1 = 2 3 - 2 = 1 2 - 1 = 1 3 - 2 = 1
3 - 2 = 1 2 - 1 = 1 3 - 1 = 2 3 - 1 = 2
2 - 1 = 1 3 - 1 = 2 1 + 1 = 2 1 + 2 = 3
3 - 1 = 2 3 - 2 = 1 2 - 1 = 1 3 - 2 = 1
3 - 2 = 1 2 - 1 = 1 3 - 1 = 2 3 - 1 = 2
ok nhá
Tính:
| 1 + 2 = … | 3 – 1 = … | 1 + 1 = … | 2 – 1 = … |
| 3 – 2 = … | 3 – 2 = … | 2 – 1 = … | 3 – 1 = … |
| 3 – 1 = … | 2 – 1 = … | 3 – 1 = … | 3 – 2 = … |
Lời giải chi tiết:
| 1 + 2 = 3 | 3 – 1 = 2 | 1 + 1 = 2 | 2 – 1 = 1 |
| 3 – 2 = 1 | 3 – 2 = 1 | 2 – 1 = 1 | 3 – 1 = 2 |
| 3 – 1 = 2 | 2 – 1 = 1 | 3 – 1 = 2 | 3 – 2 = 1 |
| 1+2=3 | 3-1=2 | 1+1=2 | 2-1=1 |
| 3-2=1 | 3-2=1 | 2-1=1 | 3-1=2 |
| 3-1=2 | 2-1=1 | 3-1=2 | 3-2=1 |
#HT#
1. 3, 2, 2, 1.
2. 1 ,1 ,1 ,2.
3. 2, 1, 2, 1.
HT!
Chứng minh rằng:
a,A=1/2+1/2^2+1/2^3+.+1/2^2<1
b,B=1/3+1/3^2+1/3^3+...+1/3^n<1/2
c,B=1/2-1/2^2+1/2^3-1/2^4+...+1/2^2015-1/2^2016<1/3
d,D=1/3+2/3^2+3/3^3+4/3^4+...+100/3^100<3/4
?reeeeeeeeeeee
Ủa, cái số gì đây??????
Tính:
A=(1-1/1+2).(1-1/1+2+3).(1-1/1+2+3+4)...(1-1/1+2+3+4+...+2022)
B=1+1/2(1+2)+1/3(1+2+3)+1/100(1+2+3+...+100)
a: Ta có công thức tổng quát:
\(1-\frac{1}{1+2+\cdots+n}\)
\(=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}\)
\(=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)
Ta có: \(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\cdot\ldots\cdot\left(1-\frac{1}{1+2+\cdots+2022}\right)\)
\(=\frac{\left(2+2\right)\left(2-1\right)}{2\left(2+1\right)}\cdot\frac{\left(3+2\right)\left(3-1\right)}{3\left(3+1\right)}\cdot\ldots\cdot\frac{\left(2022+2\right)\left(2022-1\right)}{2022\left(2022+1\right)}\)
\(=\frac{4\cdot5\cdot\ldots\cdot2024}{3\cdot4\cdot\ldots\cdot2023}\cdot\frac{1\cdot2\cdot\ldots\cdot2021}{2\cdot3\cdot\ldots\cdot2022}=\frac{2024}{3}\cdot\frac{1}{2022}=\frac{1012}{1011\cdot3}=\frac{1012}{3033}\)
b:Sửa đề: \(B=1+\frac12\left(1+2\right)+\frac13\left(1+2+3\right)+\cdots+\frac{1}{100}\left(1+2+\cdots+100\right)\)
\(=1+\frac12\cdot\frac{2\cdot3}{2}+\frac13\cdot\frac{3\cdot4}{2}+\cdots+\frac{1}{100}\cdot\frac{100\cdot101}{2}\)
\(=1+\frac32+\frac42+\cdots+\frac{101}{2}=\frac12\left(2+3+4+\cdots+101\right)\)
\(=\frac12\left(101-2+1\right)\cdot\frac{101+2}{2}=\frac12\cdot100\cdot\frac{101+2}{2}=103\cdot25=2575\)