tìm x,y thuộc Z biết:\(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{7}\)
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
1. Tìm x,y thuộc Z biết:
a,\(\frac{x}{7}=\frac{9}{y}\)và x > y
b,\(\frac{-2}{x}=\frac{y}{5}\)và x<0<,y.
2.Tìm x,y thuộc Z biết:
\(\frac{x-4}{y-5}=\frac{4}{3}\)và x - y =5
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
câu c mk nhầm đề sr bạn nha
\(\frac{y+5-4}{y-5}=\frac{4}{3}\Rightarrow3y+3=4y-5\Rightarrow y=8\Rightarrow x=13\)
tìm x;y thuộc Z biết:
1)\(\frac{x-5}{y-4}=\frac{5}{4}\)và x-y=6
2)\(\frac{x}{y}=\frac{2}{7}\)
1. \(\frac{x-5}{y-4}\) = \(\frac{5}{4}\)
=> ( x - 5 )4 = ( y - 4 )5
4x - 20 = 5y - 20
4x = 5y - 20 + 20
4x = 5y (1)
Theo bài ra , ta có x - y = 6 nên x = y + 6 (2)
Thay (2) vào (1) , có 4x = 5y <=> 4( y + 6 ) = 5y <=> 4y + 24 = 5y
=> 24 = 5y - 4y => 5y - 4y = 24 => y = 24
Thay y = 24 vào (2) ta đc : x = 24 + 6 = 30
Vậy \(\frac{x}{y}\) = \(\frac{30}{24}\) = \(\frac{5}{4}\)
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Tìm x;y thuộc N :
25 - y2=8(x - 2009)2
Tìm x thuộc Z biết:
a)\(2x+\frac{1}{7}=\frac{1}{y}\)
b)\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
c)\(\frac{x}{8}-\frac{1}{y}=\frac{1}{4}\)
Bài 1: Tìm các số x; y; z biết rằng \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 124.
Bài 2: Tìm các số x; y; z biết rằng \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Bài 1. Tìm x,y thuộc Z biết
a)\(\frac{x}{-3}=\frac{9}{y}\)và x>y
b)\(\frac{3x-2}{4y-5}=\frac{-7}{5}\)và x+y=5
c)\(\frac{x}{10}=\frac{-2}{x+1}\)
\(\frac{x}{-3}=\frac{9}{y}\Leftrightarrow xy=-27\)
Mà \(-27=-3\cdot9=-1\cdot27=-9\cdot3=-27\cdot1\)
mặt khác x>ynên ta có các cặp số (x;y)={(9;-3),(27;-1),(1;-27),(3;-9)}
\(\frac{3x-2}{4y-5}=-\frac{7}{5}\)
\(\Leftrightarrow\frac{3x-2}{4\left(5-x\right)-5}=-\frac{7}{5}\)
\(\Leftrightarrow\frac{3x-2}{15-4x}=-\frac{7}{5}\)\(\left(x\ne\frac{15}{4}\right)\)
\(\Leftrightarrow x=\frac{95}{13}\Rightarrow y=-\frac{30}{13}\)
Loại vì x,y phải là số nguyên
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
1/ Tìm x, y biết:
a/ \(\frac{x}{y}=\frac{7}{3}\)và 5x - 2y = 87
b/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
2/ Tìm các số a, b, c biết rằng: 2a = 3b; 5b = 7c và 3a+5c - 7b = 30
3/ Tìm các số x; y; z biết rằng:
a/ \(3x=2y;7y=5z\) và x - y + z =32
b/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z =49
c/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y - z =50
4/ Tìm các số x; y; z biết rằng:
a/ \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
1.
a)Ta có: 3.x=y.7
3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau
suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)
7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau
suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)
(y khác 0 nên k khác 0)
vậy: x=2.k
y=5.k
(k thuộc tập hợp Z và k khác 0)