so sánh 2017/2018 +2018/2017 với 2
2017/căn 2018+2018/căn 2017 so sánh với căn 2017 + căn 2018
Áp dụng BĐT Svác-xơ ta có:
\(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}\ge\frac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2017}+\sqrt{2018}}=\sqrt{2017}+\sqrt{2018}\)
do \(\frac{2017}{\sqrt{2018}}\ne\frac{2018}{\sqrt{2017}}\)nên dấu "=" không xảy ra
Vậy \(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)
so sánh: A= 2017+2018/2018+2019 với B= 2017/2018+2018/2019
So sánh 2017^2016+2018/2017^2017+2018với 2017^2017+2018/2017^2018+2018
Ai kết bạn mình đi
So sánh \(\frac{2017}{2018}+\frac{2018}{2017}\)với 2
Gọi A = 2017/2018 + 2018/2017
= 2017-1/2018 + 2017+1/2017
= 1 - 1/2018 + 1 + 1/2017
= 2 + ( -1/2018 + 1/2017)
Từ trên => A> 2
K MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
so sánh : P = 2016/2017 + 2017/2018 + 2018/2019 và Q = 2016 + 2017 + 2018/2017 + 2018 + 2019
Ta có :
\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow P>Q\)
Chúc bạn học tốt !!!
vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q
Vậy P<Q.
mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá
Đơn giản P < Q
Vì Nhìn sơ qua ta thấy tổng P gồm các phân số bé hơn 1
Tổng Q có 3 phân số lớn hơn 1
Hãy so sánh: A=\(\frac{2018-2017}{2018+2017}\) và B=\(\frac{2018^2-2017^2}{2018^2+2017^2}\)
Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)
Vậy A<B
Cho M= 2017/1.2 + 2017/2.3 + 2017/3.4 +.....+ 2017/99.100
P= 2018/51 + 2018/52 + 2018/53 +.........+ 2018/100
So Sánh M với P
So sánh \(A=\frac{2018-2017}{2018+2017}\) và \(B=\frac{2018^2-2017^2}{2018^2+2017^2}\)
Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)
Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)
\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)
Vậy A<B
So sánh 2017/√2018 +2018/√2017 và √2018+√2017
Làm ơn giúp mình với mình đang cần gấp
So sánh:
A= 2018^2017+1/2018^2017-1
B= 2018^2017-1/2018^2017-3
link nà:https://olm.vn/hoi-dap/tim-kiem?q=so+s%C3%A1nh+:+A=2017%5E2017/2018%5E2017+1B=2017%5E2016+1/2017%5E2017+1+&id=862033