Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Uzumaki Naruto
Xem chi tiết
Nguyễn Huỳnh Minh Thư
Xem chi tiết
phan tuấn anh
24 tháng 9 2016 lúc 10:00

1) đặt đk rùi bình phương 2 vế là ok

2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))

<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)

<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)

<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)

<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)

đến đây bình phương 2 vế rùi giải bình thường nhé 

lê khôi hưng
Xem chi tiết
Nguyễn Ngọc Tú
22 tháng 2 2016 lúc 17:48

\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)

\(\Leftrightarrow\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}=x-\frac{4}{x}\)

\(\Leftrightarrow\frac{\frac{4}{x}-x}{\sqrt{x-\frac{1}{x}}+\sqrt{2x-\frac{5}{x}}}=x-\frac{4}{x}\)

\(\Leftrightarrow\left(\frac{4}{x}-x\right).\left(\frac{1}{\sqrt{x-\frac{1}{x}}+\sqrt{2x-\frac{5}{x}}}+1\right)=0\)

\(\frac{1}{\sqrt{x-\frac{1}{x}}+\sqrt{2x-\frac{5}{x}}}+1>0\Rightarrow\frac{4}{x}-x=0\Rightarrow x=2;x=-2\)

Thử lại, ta có nghiệm \(x=2\) thỏa mãn.
Vậy, \(x=2\).

ai tra loi dung se cho 2...
21 tháng 2 2016 lúc 23:08

tui mới hok lớp 6 thui

Trần Thị Huệ
22 tháng 2 2016 lúc 5:23

xin lỗi em mới học lớp 6

Nguyễn Ngọc Anh
Xem chi tiết
Trí Tiên亗
2 tháng 9 2020 lúc 9:53

Bạn xem lại đề câu b và c nhé !

a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)

\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)

\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ

\(\Rightarrow x\ge2\) thỏa mãn đề.

d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)

\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)

Pt tương đương :

\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )

e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)

\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)

Phương trình (1) tương đương :

\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )

Khách vãng lai đã xóa
Kuramajiva
Xem chi tiết
Nguyễn Mai Quỳnh Anh
Xem chi tiết
Mi Trần
Xem chi tiết
Trịnh Văn Đại
9 tháng 9 2016 lúc 9:58

a)x=-0.25

b)x=2

Nguyễn tuấn nghĩa
Xem chi tiết
Đinh quang hiệp
19 tháng 6 2018 lúc 8:34

\(\Rightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{2x^3}{2}+\frac{x^2}{2}+\frac{2x}{2}+\frac{1}{2}\)

\(\Rightarrow\sqrt{x^2+x+\frac{1}{2}-\frac{1}{4}}=\sqrt{x^2+x+\frac{1}{4}}=x^3+\frac{x^2}{2}+x+\frac{1}{2}\)

\(\Rightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}=x+\frac{1}{2}=x^3+\frac{x^2}{2}+x+\frac{1}{2}\)

\(\Rightarrow x^3+\frac{x^2}{2}+x+\frac{1}{2}-x-\frac{1}{2}=x^3+\frac{x^2}{2}=0\Rightarrow\frac{2x^3+x^2}{2}=0\)

\(\Rightarrow2x^3+x^2=0\Rightarrow x^2\left(2x+1\right)=0\Rightarrow\hept{\begin{cases}x^2=0\Rightarrow x=0\\2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\end{cases}}\)

vậy x=0 và x=-1/2

Nhật Vy Nguyễn
Xem chi tiết
Trần Thị Minh Thư
4 tháng 3 2018 lúc 22:19

hello bạn