cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a) góc AEF = góc ABC
b) EB là tia phân giác của góc DEF
cho tam giác ABC có 3 góc nhọn, các đường cao AD,BE,CF cắt nhau tại H
a)cm tam giác ABE đồng dạng với tam giác ACF
b)HE.HB=HC.HF
c)góc AEF=góc ABC
d)EB là tia phân giác góc DEF
xét tam giác abe va acf
co ;goc f=goc e =90
goc a chung
2 tam giuac dong dang
a) Xét ΔABE và ΔACE có:
\(\widehat{AEB}=\widehat{AFC}\) \(=90^0\)
\(\widehat{CAB}:chung\)
=> ΔABE∼ΔACE (g.g)
b) Xét ΔFHB và ΔEHC có:
\(\widehat{HFB}=\widehat{HEC}\) \(=90^0\)
\(\widehat{FHB}=\widehat{EHC}\) (2 góc đối đỉnh)
=> ΔFHB∼ΔEHC (g.g)
=> \(\frac{HF}{HE}=\frac{HB}{HC}\Leftrightarrow HF.HC=HB.HE\) (đpcm)
c) Theo câu a) ta có: ΔABE∼ΔACF
=> \(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét ΔBAC và ΔEAF có:
\(\widehat{BAC}:chung\)
\(\frac{AB}{AC}=\frac{AE}{AF}\) (cmtrn)
=> ΔBAC∼ΔEAF (c.g.c)
=> \(\widehat{AEF}=\widehat{ABC}\) (2 góc tương ứng)
Mk vẽ ngược 2 đỉnh B,C đó. Xl bh mk vs để ý
cho tam giác ABC có 3 góc nhọn, các đường cao AD,BE,CF cắt nhau tại H
a)cm tam giác ABE đồng dạng với tam giác ACF
b)HE.HB=HC.HF
c)góc AEF=góc ABC
d)EB là tia phân giác góc DEF
Nguyễn Trọng Phúc cho mình hỏi tại sao AC/BC = DC/EC?
cho tam giác ABC có 3 góc nhọn, các đường cao AD,BE,CF cắt nhau tại H
a)cm tam giác ABE đồng dạng với tam giác ACF
b)HE.HB=HC.HF
c)góc AEF=góc ABC
d)EB là tia phân giác góc DEF
cho tam giác ABC có 3 góc nhọn, các đường cao AD,BE,CF cắt nhau tại H
a)cm tam giác ABE đồng dạng với tam giác ACF
b)HE.HB=HC.HF
c)góc AEF=góc ABC
d)EB là tia phân giác góc DEF
Cho tam giác ABC nhọn, các đường cao Ad Be CF cắt nhau tại H
a. cm AE×AC=Af×AB
B góc aef =abc
C eb là phân giác của góc DEf
cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H.
CHứng minh EB là tia phân giác của góc DEF
Cho tam giác ABC nhọn. Các đường cao AD,BE,CF cắt nhau tại H. chứng minh rằng
a) góc AEF= góc ABC
b) \(BH.BE+CH.CF=BC^2\)
c) EB là tia phân giác của góc DEF
a)cm tam giác AFC đồng dạng tam giác AEB(gg)
=> tam giác AFE đồng dạng ACB(cgc) . từ đó suy ra đpcm
b) tam giác BDH đồng dạng tam giác BEC (gg)
=> BH/BC =BD/BE hay BH .BE =BD.BC (1)
t^2 CH.CF=DC.BC (2)
lấy (1)+(2) theo vế suy ra đpcm
c)tam giác AFE đd tam giác ACB ( câu a) => góc AEF = góc C
t^2 tam giác DEC đd tam giác ABC => góc DEC= góc C
Do đó góc AEF= góc DEC
mà góc AEF+góc FEB=90 ; góc DEC+BED =90
=> góc FEB= góc BED
suy ra đpcm ................... (x-x)
a, Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE và CF cắt nhau tại H. chứng minh:
- góc AEF=ABC
- EB là tia pg góc DEF
b, Cho hcn ABCD. BH vuông góc AC(H thuộc AC). Gọi M,N lần lượt là trung điểm AH và CD.
Cm: MN vuông góc MB
Cho tam giác ABC nhọn. Đường cao AD, BE, CF cắt nhau tại H. Chứng minh: EB là đường phân giác góc DEF
cho tam giác ABC có ba góc nhọn, các đường cao AD,BE,CF gặp nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau tại G .
a) tam giac ABC đồng dạng với tam giác AEF
b)góc BDF = góc CDE
c) H cách đều các cạnh của tam giác DEF