Chứng minh đa thức M(x)= -8x^2+x+2 không có nghiệm
Chứng minh đa thức sau không có nghiệm x^2 + 8x + 19
x^2+8x+19
=x^2+4x+4x+8+11
=(x^2-4x)-(4x-8)+11
=x(x-4)-(x-4)+11
=(x-4)-(x-4)+11
=(x-4)^2+11
Vì (x-4)^2 Lớn hơn hoặc bằng 0
=>(x-4)^2+11>0
Vậy đa thức sau không có nghiệm
Chứng minh rằng đa thức : P(x) = 2x2 + 8x + 17 không có nghiệm
Ta có: P(x) = 2 . ( x2 + 4x ) + 17
= 2 . ( x2 + 2 . x . 2 + 22 - 22 ) + 17
= 2 . [ ( x2 + 2 . x . 2 + 22 ) - 22 ] + 17
= 2 . [ ( x + 2 )2 - 4 ] + 17
= 2 . ( x + 2 )2 - 8 + 17
= 2 . ( x + 2 )2 + 9
Vì ( x + 2 )2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2 . ( x + 2 )2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2 . ( x + 2 )2 + 9 \(\ge\) 9 \(>\) 0 với mọi x
\(\Rightarrow\) P(x) \(\ge\) 0 với mọi x
\(\Rightarrow\)Đa thức P(x) không có nghiệm
chứng minh đa thức M(x) không có nghiệm
M(x)= -x^2-2
-x^2 - 2 = 0
=> - ( x^2 + 2) = 0
=> x^2 + 2 = 0
Vì x^2 luôn luôn lớn hơn = 0 => x^2 + 2 lớn hơn 0
=> M(x) vô nghiệm
Ta có -x^2 <= 0 => M(x) <0 => M(x) không có nghiệm
-2 < 0
Chứng minh rằng đa thức: P(x)=x^2+8x=20 không có nghiệm với mọi x
Giải giúp mình gấp nha. Thanks nhiều^^
Chứng minh rằng đa thức sau không có nghiệm:
D(x) = \(-2x^2+8x-10\)
Biến đổi ta có : -2x2 = -8
\(\Rightarrow2x^2=8\)
\(\Rightarrow x^2=4\)
Vậy đa thức có tập nghiệm là -2 ;2
Cho giải lại
biến đoi ta có : \(-2x^2+8x=10\)
\(\Leftrightarrow-x^2+4x=5\)
\(\Leftrightarrow x\left(x+4\right)=-5\)
Vậy đa thcuw vo nghiem
~v; giải bài cao xa quá giờ giải lại chả biết đúng không :((
Cho D(x) = 0 tức là \(-2x^2+8x-10=0\)
Chia hai vế cho -1 ta được: \(2x^2-8x+10=0\)
Ta có: \(\text{Vế trái}=2\left(x^2-4x+4\right)+2=2\left(x-2\right)^2+2\ge2>0\forall x\)
Nên đa thức vô nghiệm. (đpcm)
1/ Chứng minh M(x)= -x2 + 5 không có nghiệm.
2/ Tìm hệ số a của đa thức M(x)= a x2 + 5 x - 3, biết rằng đa thức này có một nghiệm là \(\dfrac{1}{2}\)
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
Chứng minh rằng đa thức P(x)= x^2+8x+20 không có nghiệm với mọi x
Giải giúp mình với đang cần gấp. Thanks nhiều ạ ^^
x^2>=0 voi moi x
8x>=0 voi moi x
20>0
Nen P(x) vo nghiem
\(x^2>=0\) với mọi x
\(8x>=0\) với mọi x
<=> 20<0
Nên P(x) vô nghiệm
Ta có P(x) = x2 + 8x + 20
= x2 + 4x + 4x + 16 + 4
= x(x+4) + 4(x+4) + 4
= (x+4)2 + 4 >= 4 > 0
=> Đa thức P(x) không có nghiệm
Cho đa thức: -9x^4–8x^3–x^2+1 Câu hỏi: Chứng tỏ P(x) không có nghiệm
Chứng minh đa thức trên không có nghiệm
\(M(x)=x^4+x^3+2x^2+1\)