Cho tam giác ABC cân tại A và H là trung điểm của BC. Gọi E là chân đường vuông góc kẻ từ H xuống AC và O là trung điểm HE. Chứng minh:
a) HA.CE = HE.CH
b) Tam giác AHO đồng dạng với tam giác BCE
Cho tam giác ABC cân tại A, H là trung điểm BC. E là chân đường cao kẻ từ H đến AC. O là trung điểm HE. Chứng minh: \(\Delta AHO\)dồng dạng \(\Delta BCE\)
Cho tam giác ABC cân tại A(BAC<90). Từ A kẻ đường thẳng vuông goác vưới AB cắt đường thẳng BC ở D. Gọi H là trung điểm của BC, I là chân đường vuông góc hạ từ H xuống AC
a)Chứng minh tam giác HIC đồng dạng với tam giác AHC
B chúng minh AH^2=BH.HD
(kẻ hình giúp minhg nha)
cho tam giác abc cân tại a (góc a nhọn). từ a kẻ ah vuông góc với bc a) chứng minh tam giác ahb=tam giác ahc và h là trung điểm của bc. b) gọi m trung điểm của ac. qua c kẻ đường thẳng song song với ab cắt bm tại e. chứng minh ab bằng ce và tam giác ace cân tại c. c) gọi i là giao điểm của ah và be . chứng minh i là trọng tâm của tam giác abc . d) chứng minh ab+ae>3bi. lớp 7
Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh BC lấy điểm H sao cho HB = BA, từ H kẻ HE vuông góc với BC tại H (E thuộc AC)
a) Chứng minh:
b) Chứng minh: Tam giác AEH cân tại E.
c) Chứng minh: BE là đường trung trực của AH.
d) Gọi K là giao điểm của HE và BA. Chứng minh: BE vuông góc KC
câu a là trứng minh tam giac abe và hbe nhé
\
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
Do đó; ΔBAE=ΔBHE
b: ΔBAE=ΔBHE
=>EA=EH
=>ΔEAH cân tại E
c: BA=BH
EA=EH
=>BE là trung trực của AH
d: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
Do đó: E là trực tâm
=>BE vuông góc KC
Cho tam giác ABC cân tại B. Lấy điểm E là trung điểm của AC.
a) Chứng minh tam giác BAE= tam giác BCE.
b) Từ E kẻ EK vuông góc vớiAB tại K, EH vuông góc với AC tại H. Chứng minh tam giác AKE= tam giác CHE.
c) Gọi I là giao điểm của BE và KH. Chứng minh KH// AC.
xét tam giác BAE và tam giác BCE có:
BE chung
AE=EC( E là trung điểm AC)
BA=BC(tam giác ABC cân)
=>tam giác BAE= tam giác BCE(c.c.c)
b)xét tam giác AKE và tam giác CHE có :
AE=EC
góc A= góc C
góc AKE= góc CHE=90 độ
=>tam giác AKE= tam giác CHE (cạnh huyền -góc nhọn )
c) có BA-AK=BK
BC-CH=BH
mà BA=BC(tam giác ABC cân) ;CH=AK( Do 2 tam giác = nhau ở câu b)
=>BH=BK
=>tam giác BKH cân tại B=>gócBK=BHK=\(\frac{180-B}{2}\)(1)
tam giác ABC cân tại B=>góc A=góc C=\(\frac{180-B}{2}\)(2)
từ (1) và(2)=>góc A= góc BKH
mà 2 góc này ở vị trí đồng vị=>KH // AC
1)Tam giác ABC vuông cân tại A, đường trung tuyến AM. Gọi D là điểm thuộc đoạn thẳng MC. Gọi H là chân đường vuông góc kẻ từ B đến AD. Gọi I, K lần lượt là chân đường vuông góc kẻ từ M đến AD và BH. Chứng minh HM là tia phân giác của góc BHD.
2)Tam giác ABC có I là giao điểm các tia phân giác của các góc B và C. Gọi d là giao điểm của AI và BC. Kẻ IH vuông góc với BC( H thuộc BC). Chứng minh rằng góc BIH= góc CID.
3) Cho tam giác ABC có góc C=30 độ. Tia phân giác của góc B và đường phân giác của góc ngoài tại A cắt nhau ở E. Tính số đo góc BCE.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Bài làm
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau:
5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2.
Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7
Ta làm như sau: 6 - 7
Không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5.
Vậy 8,6 - 2,7 = 5,9
Cho tam giác ABC cân tại A, đường trung tuyến AH. Gọi I là hình chiếu của H trên AC.
A) chứng minh tam giác AIH đường dạng với tam giác AHC
B) chứng minh AH.BC=2IH.AB
C) cho CI= 9cm, AC= 16cm. Tính AH và diện tích của tam giác ABC
Gọi O là trung điểm của HI. Chứng minh tam giác BIC đồng đang với tam giác AHO từ đó suy ra AO vuông góc vs BI
Cho tam giác ABC cân tại A, đường trung tuyến AH. Gọi I là hình chiếu của H trên AC.
A) chứng minh tam giác AIH đường dạng với tam giác AHC
B) chứng minh AH.BC=2IH.AB
C) cho CI= 9cm, AC= 16cm. Tính AH và diện tích của tam giác ABC
Gọi O là trung điểm của HI. Chứng minh tam giác BIC đồng đang với tam giác AHO từ đó suy ra AO vuông góc vs BI
cho tam giác abc cân tại a (ab<ac) và d là trung điểm của bc. từ d vẽ đường thẳng vuông góc với bc cắt ac tại e.
a) cm tam giác dec đồng dạng với tam giác abc
b) đường vuông góc với bc kẻ từ b cắt ca tại f. cm bf^2=fa.fc
c) gọi I là trung điểm của ab. chứng minh tam giác fib đồng dạng với tam giác fdc
d) hai đường thẳng fi và ed giao tại m. chứng minh mc vuông góc với fc