Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Anh Lê
Xem chi tiết
Diệu Anh Bùi
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 2 2020 lúc 21:57

\(x^2+3+\frac{1}{x^2+3}=\frac{x^2+3}{9}+\frac{1}{x^2+3}+\frac{8\left(x^2+3\right)}{9}\ge2\sqrt{\frac{x^2+3}{9\left(x^2+3\right)}}+\frac{8.\left(0+3\right)}{9}=\frac{10}{3}\)

Dấu "=" xảy ra khi \(x=0\)

Khách vãng lai đã xóa
Nguyễn Đăng Khang
Xem chi tiết
Đức Minh Nguyễn
Xem chi tiết
zZz Cool Kid_new zZz
25 tháng 7 2019 lúc 15:08

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(\Rightarrow2\cdot\frac{x-1}{2x+2}=\frac{2009}{2011}\)

\(\Rightarrow\frac{2x-2}{2x+2}=\frac{2009}{2011}\)

Bạn làm nốt.Nhân chéo là ra

zZz Cool Kid_new zZz
25 tháng 7 2019 lúc 15:12

\(\left(x-1\right)f\left(x\right)=\left(x+4\right)\cdot f\left(x+8\right)\)

Với  \(x=1\) ta có:

\(\left(1-1\right)\cdot f\left(1\right)=\left(1+4\right)\cdot f\left(9\right)\)

\(\Rightarrow5\cdot f\left(9\right)=0\)

\(\Rightarrow f\left(9\right)=0\)

Vậy \(x=9\)

Thay \(x=-4\) vào ta được:

\(\left(-4-1\right)\cdot f\left(-4\right)=0\cdot f\left(4\right)\)

\(\Rightarrow f\left(-4\right)=0\)

Vậy \(x=-4\)

\(\Rightarrow f\left(x\right)\) có ít nhất 2 nghiệm là 9;-4

cỏ thơm
Xem chi tiết
zZz Phan Cả Phát zZz
Xem chi tiết
kaitovskudo
26 tháng 11 2016 lúc 22:03

a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)

\(=\frac{x^2+4x+4}{x^2}\)

\(\left(\frac{x+2}{x}\right)^2\)

=>phép chia = 1 với mọi x # 0 và x#-1

b)Cm tương tự

Nguyễn Tiến Bộ
26 tháng 11 2016 lúc 16:43

khó quá

Trần Hoàng Việt
5 tháng 11 2017 lúc 9:54

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

Nguyễn Hoàng trung
Xem chi tiết
Tran Le Khanh Linh
24 tháng 4 2020 lúc 21:02

\(F=\frac{3}{2}\cdot x^4-\frac{1}{16}\cdot x^4+\frac{1}{32}\cdot x^4-\frac{1}{4}\cdot x^4\)

\(=x^4\left(\frac{3}{2}-\frac{1}{16}+\frac{1}{32}-\frac{1}{4}\right)\)

\(=\frac{32}{39}\cdot x^4\)

Vì \(x\ne0\Rightarrow x^4>0\)

=> \(\frac{32}{39}x^4>0\forall x\ne0\)

Khách vãng lai đã xóa
my name
Xem chi tiết
Stawaron 1
Xem chi tiết
Nguyễn Xuân Anh
16 tháng 4 2019 lúc 21:16

a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM) 

*NOTE: chứng minh đc vì (x-y)^2  >= 0 ;  x^2  +xy +y^2 > 0

Stawaron 1
16 tháng 4 2019 lúc 21:21

mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé

ta có \(\left(x-y\right)^2\ge0\)

<=> \(x^2+y^2\ge2xy\)

<=>\(x^2+y^2+2xy\ge4xy\)

<=>\(\left(x+y\right)^2\ge4xy\)

<=>\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

<=>\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)