Tam giác ABC vuông tại A kẻ đường phân giác BM( M thuộc AC) kẻ MH vuông góc vs BC (H thuộc BC)
a) cm tam ABM=HBM.
b) Cm MA=MH.
c)gọi K là giao điểm AB và HM cm tam giac KBC cân
Cho tam giác ABC cân tại A. Điểm H là trung điểm của cạnh BC.
a) CM tam giác AHB = tam giác AHC. CM AH vuông góc với BC.
b) Kẻ HM vuông góc với AB tại M, kẻ HN vuông góc với AC tại N. CM tam giác AHM = tam giác AHN.
c) Gọi I là giao điểm của MH và AC, gọi K là giao điểm của NH và AB. CM tam giác AIK là tam giác cân.
a) Xét \(\Delta AHB\)và\(\Delta AHC\)có :
\(\hept{\begin{cases}HB=HC\\AH\\AB=AC\end{cases}}\)( Bạn tự ghi lời giải thích nha)
\(\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)(2 cạnh tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)( 2 góc kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)
b) Xét \(\Delta AHM\left(\widehat{AMH}=90^o\right)\)và \(\Delta AHN\left(\widehat{ANH}=90^o\right)\)có :
\(\hept{\begin{cases}AH\\\widehat{A_1}=\widehat{A_2}\end{cases}}\)( bạn tự nêu lí do )
\(\Rightarrow\Delta AHM=\Delta AHN\)( Cạnh huyền - góc nhọn )
1. Cho tam giác ABC cân tại A. kẻ AH vuông góc với BC (H thuộc BC)
a) Cm: HB=HC
b) Cm: AH là tia phân giác của góc BAC
c) Kẻ Bx vuông góc với BA, Cy vuông góc với CA. gọi K là giao điểm của hai tia Bx và Cy. Cm tam giác KBC cân tại K
2. Cho tam giác ABC cân tại A. Tia phân giác của góc A cắt BC tại H
a) Cm: tam giác AHB= tam giác AHC
b) Cm: AH vuông góc với BC
c) Cho AB=13cm, BC=10cm. Tính AC
Giúp mik với, mik cảm ơn!
Bài 2:
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
DO đó; ΔAHB=ΔAHC
b: Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
c: BC=10cm nên BH=CH=5cm
=>AC=13cm
Cho tam giác ABC vuông cân tại A, kẻ AM vuông góc BC (M thuộc BC).a)cm : tam giác ABM bằng tam giác ACM.b) gọi e là một điểm nằm giữa M và C. Kẻ BH ,CK vuông góc với AE (H và K thuộc đường thẳng AE) .cm: BH = AK c)cm: tam giác mhk cân . Mik cần gấp ! Giúp mik vs ạ ❤️🥺
cho tam giác ABC cân tại A .goim M cân tại A là trung điểm của BC
a)cm tam giác ABM= tam giác ACM
b)cm AM vuông góc BC
c)kẻ MH vuông góc AB tại H
MK vuông góc AC tại K
cm MA=MB
d)cm tam giác AHK cân
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc với BC
d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>AH=AK
Cho tam giác ABC cân tại A lấy điểm M là trung điểm của BC
a) Chứng minh tam giác ABM=tam giác ACM
b) Biết AB=10cm ; BC= 12 cm. Tính AM
c) qua M kẻ MK vuông góc AB ( k thuộc AB ) , Kẻ MH vuông góc AB (H thuộc AC) . Chứng minh MH = MK
d) Chứng minh AM vuông góc với KH
( Mng ơi , giúp mình câu d bài này với ạ , cảm ơn mng nhìu ạ )
mình chỉ giúp ý d theo mong muốn của bạn thôi :)
Có : AH = AK ( cái này bạn chứng minh ở câu trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )
=> A thuộc đường trung trực của HK
và MH=MK
=> M thuộc đường trung trực của HK
=> AM là đường trung tực của HK
=> AM ⊥ HK
Cho tam giác ABC vuông tại A có AB<AC , kẻ đường phân giác BD của góc ABC ( D thuộc AC ) . Kẻ DM vuông góc với BC tại M
â) Cm: tam giác DAB = tam giác DMB
b) CM: BD là đường trung trực của AM
c) Gọi K là giao điểm của đường thẳng DM và AB , đường thẳng BD cắt KC tại N . CM: BN vuông góc Kc và tam giác KBC cân tại B
đ) gọi E al trunbg điểm của BC . Qua N kẻ đường thẳng song song với BC , cắt AB tại P . CM : 3 duog thằng CP , KỆ , BN đồng quy
a.Xét ΔDAB,ΔDMBΔ���,Δ��� có:
ˆDAB=ˆDMB(=90o)���^=���^(=90�)
Chung BD��
ˆABD=ˆMBD���^=���^
→ΔDAB=ΔDMB→Δ���=Δ���(cạnh huyền-góc nhọn)
b.Từ câu a →BA=BM,DA=DM→��=��,��=��
→B,D∈→�,�∈ trung trực AM��
→DB→�� là trung trực AM��
c.Ta có: DM⊥BC→KD⊥BC��⊥��→��⊥��
CA⊥AB→CD⊥BK��⊥��→��⊥��
→D→� là trực tâm ΔBCKΔ���
→BD⊥CK→��⊥��
→BN⊥KC→��⊥��
Xét ΔBMK,ΔBACΔ���,Δ��� có:
Chung ^B�^
BM=BA��=��
ˆBMK=ˆBAC(=90o)���^=���^(=90�)
→ΔBMK=ΔBAC(c.g.c)→Δ���=Δ���(�.�.�)
→BK=BC→��=��
→ΔKBC→Δ��� cân tại B�
d.Ta có: ΔBCKΔ��� cân tại B,BN⊥CK→N�,��⊥��→� là trung điểm KC��
Trên tia đối của tia NP�� lấy điểm F� sao cho NP=NF��=��
Xét ΔNKP,ΔNCFΔ���,Δ��� có:
NK=NC��=��
ˆKNP=ˆCNF���^=���^
NP=NF��=��
→ΔNKP=ΔNCF(c.g.c)→Δ���=Δ���(�.�.�)
→KP=CF,ˆNKP=ˆNCF→KP//CF→CF//BP→��=��,���^=���^→��//��→��//��
Xét ΔFPC,ΔBPCΔ���,Δ��� có:
ˆCPF=ˆPCB���^=���^ vì NP//BC��//��
Chung NP��
ˆPCF=ˆCPB���^=���^ vì BP//CF��//��
→ΔFPC=ΔBCP(g.c.g)→Δ���=Δ���(�.�.�)
→CF=BP→��=��
→PK=BP→��=��
→P→� là trung điểm BK��
Do E,N�,� là trung điểm BC,CK��,��
→KE,BN,CP→��,��,�� đồng quy tại trọng tâm ΔKBCΔ���
Cho tam giác ABC vuông tại A, phân giác BD. Kẻ AE vuông góc BD, AE cắt BC tại M
a/Cm tam giác ABM cân tại B
b/Cm MD vuông góc BC
c/Kẻ AI vuông góc BC. Cm AM là phân giác của góc IAM
d/ Gọi H là giao điểm của AI và BD. Cm MA song song AC
Cho tam giác ABC có AB=AC=5cm.BC=6cm.Kẻ AH vuông góc với BC tại H
a)CM tam giác AHB =tam giác AHC
b)Tính AH
c)Kẻ tia phân giác BM của góc ABC (M thuộc AC).tia phân giác CN của góc ACB (N thuộc AB).Gọi K là giao điểm của BM và CN .Cm tam giác KMN là tam giác cân
d)CM MN//BC
Các vẽ hình giúp mình với nha cảm ơn mọi người nhiều ạ
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AHchung
Do đo: ΔAHB=ΔAHC
b: HB=HC=BC/2=3cm
=>AH=4cm
c: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
Do đó: ΔABM=ΔACN
Suy ra BM=CN
Xét ΔNBC và ΔMCB có
NB=MC
NC=MB
BC chung
Do đo: ΔNBC=ΔMCB
Suy ra: góc KBC=góc KCB
=>ΔKBC cân tại K
=>KB=KC
=>KN=KM
hay ΔKNM cân tại K
d: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
Cho tam giác ABC, có góc A=90 độ, kẻ phân giác Bm, kẻ MH vuông góc với BC. Gọi K là giao điểm của AB và Hm
Cm:
a,tam giác ABM = tam giác HBM
b, BM là đường trung trực của đoạn thẳng AH
c,MK=MC d,AM
a) tam giác ABM và tam giác HBM có:
<ABM = <HBM (p/g)
BM chung
<A = <H
=>tam giác ABM = tam giác AHM (ch-gn)
b) theo câu a => AM = HM =>BM là trung trực của AH
c) tam giác AKM và tam giác HMC có:
<AMK = <HMC ( đối đỉnh)
AM = HM ( theo câu b)
<MAK = <MHC (=90 độ)
=> tam giác AKM = tam giác HMC (cgv-gn)
=>MK = MC ( hai cạnh tương ứng)
d)...