Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hue Nguyen
Xem chi tiết
Đào Chí Nguyên
Xem chi tiết
Kynz Zanz
Xem chi tiết
»» Hüỳñh Äñh Phươñg ( ɻɛ...
16 tháng 6 2021 lúc 11:36

a) Chữ số tận cùng của 74n là : ( 7 * 7 * 7 * 7 ) mod 10 = 1

Vậy chữ số tận cùng của 74n - 1 là : ( 7 * 7 * 7 * 7 - 1 ) mod 10 = 0 ( đpcm )

b) Tương tự

Khách vãng lai đã xóa
Xyz OLM
16 tháng 6 2021 lúc 11:43

Ta có 74n - 1 = (74)n - 1 = (...1)n - 1 = (...1) - 1 = (...0)

=> 74n - 1 \(⋮\)5

Ta có 34n + 1 + 2 =34n.3 + 2 = (34)n.3 + 2 = (...1)n.3 + 2 =(...1).3 + 2 =(...3) + 2 = (...5)

=> 34n + 1 + 2 \(⋮\)5

Khách vãng lai đã xóa
Nhok Silver Bullet
Xem chi tiết
Mr Lazy
26 tháng 6 2015 lúc 10:32

a) \(2^{4n+1}+3=2.2^{4n}+3=2.16^n+3\)

Do \(16^n\) có tận cùng luôn là 6 nên \(2.16^n\) có tận cùng là 2 => \(2^{4n+1}+3\) có tận cùng là 5 nên chia hết cho 5.

Phạm Gia Khiêm
Xem chi tiết
Phạm Gia Khiêm
Xem chi tiết
Nguyễn Khánh Xuân
Xem chi tiết
Võ Yến My
Xem chi tiết
Nguyễn Anh
15 tháng 12 2018 lúc 22:33

1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh

Nguyễn Anh
15 tháng 12 2018 lúc 23:27

2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.

yasuo
Xem chi tiết