Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Emilia Nguyen
Xem chi tiết
Võ Hồng Phúc
1 tháng 12 2019 lúc 19:26

Ta có:

\(x^2+y^2\ge2xy\Rightarrow x^2+y^2-xy\ge xy\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2-xy\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{x+y+z}.\frac{1}{xy}\)

Tương tự: \(\frac{1}{y^3+z^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{yz}\) ;\(\frac{1}{z^3+x^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{zx}\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{z^3+x^3+xyz}\)

\(\le\frac{1}{x+y+z}.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{x+y+z}{\left(x+y+z\right)xyz}=\frac{1}{xyz}\)

Dấu \(=\) xảy ra \(\Leftrightarrow x=y=z>0\)

Khách vãng lai đã xóa
Chung Nguyen
Xem chi tiết
lê duy mạnh
1 tháng 12 2019 lúc 16:40

AD BĐT X^3+Y^3>=XY(X+Y) LÀ RA

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
1 tháng 12 2019 lúc 18:56

Có BĐT phụ:

\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Áp dụng

\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\)

\(\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)

\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\)

\(=\frac{1}{xyz}\)

Khách vãng lai đã xóa
Lê Thành An
Xem chi tiết
zZz Cool Kid_new zZz
26 tháng 4 2020 lúc 13:37

\(\sqrt[3]{\overline{xyz}}=x+y+z\)

\(\Leftrightarrow\overline{xyz}=\left(x+y+z\right)^3\)

Đặt \(m=x+y+z\Rightarrow m\equiv\overline{xyz}\left(mod9\right)\)

\(\Rightarrow\overline{xyz}-m⋮9\)

Đặt \(\overline{xyz}-m=9k\left(k\inℕ\right)\)

\(\Leftrightarrow m^3-m=9k\Leftrightarrow\left(m-1\right)m\left(m+1\right)=9k\)

\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮9\)

Nhận xét:trong 3 số tự nhiên liên tiếp tồn tại duy nhất 1 số chia hết cho 3 mà tích chúng chia hết cho 9 nên tồn tại duy nhất 1 số chia hết cho 9

Mặt khác \(100\le\overline{xyz}\le999\Rightarrow100\le m^3\le999\)

\(\Leftrightarrow4\le m\le9\Rightarrow3\le m-1\le8;5\le m+1\le10\)

Nếu \(m⋮9\Rightarrow m=9\Rightarrow\overline{xyz}=9^3=729\)

Thử lại ta thấy không thỏa mãn,loại

Nếu \(m-1⋮9\left(KTM\right)\)

Nếu \(m+1⋮9\Rightarrow m+1=9\Rightarrow m=8\Rightarrow\overline{xyz}=8^3=512\)

Thử lại ta thấy thỏa mãn

Vậy số đó là 512

Khách vãng lai đã xóa
Phạm Hải Yến
Xem chi tiết
Hà Văn Hoàng Anh
Xem chi tiết
Nguyệt Hà
Xem chi tiết
lê duy mạnh
6 tháng 10 2019 lúc 20:12

3.(x+y)^2+y^2+3y+9/4=25/4

(x+y)^2+(y+3/2)^2=25/4

zZz Cool Kid_new zZz
6 tháng 10 2019 lúc 20:24

2

Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)

\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9

\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)

Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)

\(\Rightarrow a=2\)

\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)

\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)

Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)

shitbo
6 tháng 10 2019 lúc 21:18

\(3\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2+3y-4\right)=0\Leftrightarrow4\left(x+y\right)^2+\left(4y^2+12y-4\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(2y+3\right)^2=13\) 

...........

Nguyễn Quốc Dũng
Xem chi tiết
Nguyễn Huy Tú
26 tháng 1 2017 lúc 16:03

Giải:

Ta có: \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y+z}{2-3+5}=\frac{4}{4}=1\)

\(\left[\begin{matrix}\frac{x}{2}=1\\\frac{y}{3}=1\\\frac{z}{5}=1\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\y=3\\z=5\end{matrix}\right.\)

Vậy \(x=2;y=3;z=5\)

Ngô Đức Anh
Xem chi tiết
Kiệt Nguyễn
25 tháng 10 2020 lúc 20:51

\(ĐK:x,y,z\ne0\)

Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=a\)

\(\Rightarrow x-\frac{1}{y}=\frac{a}{6};y-\frac{1}{z}=\frac{a}{3};z-\frac{1}{x}=\frac{a}{2}\)\(\Rightarrow\frac{a^3}{36}=xyz-\frac{1}{xyz}-x+\frac{1}{y}-y+\frac{1}{z}-z+\frac{1}{x}=a-\frac{a}{6}-\frac{a}{3}-\frac{a}{2}=0\)suy ra a = 0

Nếu xyz = 1 thì x = y = z = 1 (thỏa mãn)

Nếu xyz = -1 thì x = y = z = -1 (thỏa mãn)

Vậy nghiệm của hệ phương trình (x; y; z) là: (1; 1; 1),(-1; -1; -1).

Khách vãng lai đã xóa
Đặng Phạm Thanh Tâm_1286
10 tháng 2 2020 lúc 22:16

Nhìn lozic qué bạn ey!!!

Khách vãng lai đã xóa
Tsukino Usagi
Xem chi tiết