Tìm a,b biết a×b=4320 và BCNN(a,b)=360
Tìm số tự nhiên a, b biết: a - b = 4320 và BCNN ( a ; b ) = 360
$a-b=4320$ chứng tỏ $a>4320$
Bội của $a$ cũng phải là số > 4320
Mà theo đề BCNN(a,b)=360< 4320 nên vô lý
Bạn xem lại đề.
Tìm a và b biết a.b=4320 và BCNN(a,b)=360
Tìm a và b biết a.b=13500 và UWCLN(a,b)=15
Tìm số tự nhiên a,b biết
1)a.b=4320 và BCNN(a,b)=360
2)a+b=128 và ƯCLN(a,b)=16
Tìm hai số tự nhiên a,b biết:a.b=4320 và bcnn(a,b)=360
vì 60 chia hết cho 12 nên BCNN(12;60)=12 => BC(12;60)={60;120;180;240;300;360;420;480;540;....}
Ta có: 12=22.3
60=22.3.5
BCNN(12;60)=22.3.5=60
=>BC(12;60)=B(60)={0;60;120;180;240;300;360;.....}
Tìm 2 số a,b biết:
a+b=128,ƯCLN(a,b)=16
a.b=4320,BCNN(a,b)=360
Gọi hai số cần tìm là a;b
-Ta có:BCNN (a;b)=ab
=>ƯCLN(a;b)=ab;BCNN(a,b)=4320:360=12
-Gọi a=12m
b=12n(ƯCLN(m;n)=1
=>ab=12m.12n=4320
=>144mn=4320
=>mn=30
Ta tìm được (m;n)=(1;30) (2;15) (3;10) (5;6) (6;5) (10;3) (15;2) (30;1)
Lấy m;n nhân với 12,ta tim được (a;b)=(12;360) (14;180) (36;120) (60;72) (72;60) (120;36) (180;14) (360;12)
a)Tìm số tự nhiên nhỏ nhất chia cho 5 dư 1, chia cho 7 dư 5
b)Tìm hai số tự nhiên a, b biết a*b=4320 và BCNN(a,b)= 360
c)Tìm hai số tự nhiên a, b biết : a+b = 60 và UWCLN(a,b) + BCNN(a, b) = 84
1. Tìm a,b biết
a, a.b= 4320 và BCNN(a,b)= 360
b, a+b = 288 và ƯCLN (a,b)=24
c, BCNN(a,b) - ƯCLN (a,b) = 18
2. Biết ƯCLN (a,b)= 1
Chứng minh rằng ƯCLN (ab, a+b) = 1
Mk cho bạn mấy công thức này chắc bạn cx tự giải đc:
a.b=ƯCLN(a,b).BCNN(a,b)
Nếu ƯCLN(a,b)=c=>a=cm ; b=cn và m,n nguyên tố cùng nhau
Cái bài 2 cm theo phuong pháp phản chứng nhá
ban ay lam dung roi
TÌM 2 SỐ TỰ NHIÊN A,B
a] A.B = 24300 VÀ UWCLN [A,B] =45
b] A.B = 4320 VÀ BCNN [A,B] = 360
a) Giả sử A \(\le\)B
Đặt: A = 45 x A', B = 45. B' (A', B' \(\inℕ^∗\),\(ƯCLN\left(A',B'\right)=1\), A'\(\le\)B)
\(\Rightarrow\)45 x A' x 45 x B' = 24300
A' x B' = 24300 : 452 = 12
Ta có: 12 = 1 x 12 = 3 x 4
\(\Rightarrow\)Ta có các trường hợp:
- Nếu A' = 1, B' = 12 \(\Rightarrow\)A = 45; B = 360
- Nếu A' = 3, B' = 4 \(\Rightarrow\)A = 135, B = 180
a . b = 4320 ; BCNN( a,b) = 360