Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Đăng
Xem chi tiết
alibaba nguyễn
1 tháng 7 2017 lúc 10:24

\(A=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{18}{x+y+z+3}=3\)

Nguyễn Hải Đăng
2 tháng 7 2017 lúc 10:08

cảm ơn nha

Nguyễn Thị Mai Linh
26 tháng 7 2017 lúc 8:54

=3 ban nhe.kn voi minh nha

Nàng tiên cá
Xem chi tiết

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

kudo shinichi
30 tháng 7 2019 lúc 19:04

\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y.\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

\(\Leftrightarrow A=\left[\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{x+y}{xy}\right]:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)

\(\Leftrightarrow A=\frac{2\sqrt{xy}+x+y}{xy}:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)

\(\Leftrightarrow A=\frac{\sqrt{xy}\left(x+y\right)}{xy\left(\sqrt{x}+\sqrt{y}\right)}\)

\(\Leftrightarrow A=\frac{\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)

sai sót chỗ nào chỉ cho mk nhé. ý kia chốc nx làm nốt

Trà Nhật Đông
Xem chi tiết
Trương Gia Bảo
6 tháng 11 2017 lúc 22:05

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

Trần Hữu Ngọc Minh
6 tháng 11 2017 lúc 21:39

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

Nguyen Duy Dai
Xem chi tiết
Tran Le Khanh Linh
21 tháng 8 2020 lúc 20:17

Bài này phải tìm GTLN chứ nhỉ?!

Khách vãng lai đã xóa
hung
Xem chi tiết
Thắng Nguyễn
19 tháng 7 2017 lúc 16:36

Áp dụng BĐT AM-GM ta có:

\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\frac{\sqrt{3xy}}{xy}=\frac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\frac{\sqrt{3}}{\sqrt{xz}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\ge\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)=\sqrt{3}\cdot\left(\frac{\sqrt{x}}{\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{xyz}}+\frac{\sqrt{z}}{\sqrt{xyz}}\right)\)

\(=\sqrt{3}\cdot\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\ge\sqrt{3}\cdot\frac{3\sqrt[3]{\sqrt{xyz}}}{1}=3\sqrt{3}\)

Khi \(x=y=z=1\)

Nguyễn Hương Ly
Xem chi tiết
Username2805
Xem chi tiết
Minh Thư
7 tháng 10 2019 lúc 21:35

Ta có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(BĐT Svacxo)

\(\Rightarrow\frac{1}{2}\ge\frac{4}{x+y}\)

\(\Leftrightarrow x+y\ge8\)(1)

Áp dụng BĐT Cauchy cho 2 số không âm:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)

\(\Rightarrow\frac{1}{2}\ge\frac{2}{\sqrt{xy}}\)

\(\Leftrightarrow\sqrt{xy}\ge4\)(2)

Từ (1) và (2) suy ra \(x+\sqrt{xy}+y\ge16\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge16\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}\ge4\)

Nguyễn Linh Chi
10 tháng 10 2019 lúc 15:50

Muốn cô k cũng dễ lắm. Tuy nhiên cái cô muốn là các em làm được bài trên OLM sẽ nhìn ra được những lỗi sai của mình thì để lần sau trong các cuộc thi HSG hay các bài kiểm tra trên lớp sẽ không bị mắc phải những cái lỗi tương tự.

bài phía dưới: Từ (1) , (2) => \(x+2\sqrt{xy}+y\ge16\) nha

Bỏ qua lỗi này. Cái quan trọng là khi tìm giá trị lớn nhất hoặc nhỏ nhất em cần phải biết nó đạt tại x =?, y=?.

nếu bỏ qua phần này sẽ bị trừ điểm rất nặng. :)

Minh Thư
10 tháng 10 2019 lúc 15:52

Em cảm ơn cô ạ

Username2805
Xem chi tiết
lê duy mạnh
7 tháng 10 2019 lúc 21:21

tích cho t nha

Username2805
7 tháng 10 2019 lúc 21:22

làm đi r le duy manh

Lê Ngọc Diệp
Xem chi tiết