cho A=3^2014 + 3^2015 + 3^2016+3^2017. chứng tỏ A chia hết 118
giúp tôi giải bài này, xin cám ơn!
chứng tỏ A=32014+32015+32016+32017
chứng minh A chia hết cho 120
Ta xét :
\(3^{2014}+3^{2015}+3^{2016}+3^{2017}\)
\(=3^{2014}\left(1+3+3^2+3^3\right)\)
\(=3^{2014}.40\)
\(=3^{2013}.3.40\)
\(=3^{2013}.120\)
Mà \(120⋮120\)
\(\Rightarrow3^{2013}.120⋮120\)
\(\Rightarrow A⋮120\)
\(\RightarrowĐPCM\)
ta có A=3^2014+3^2015+3^2016+3^2017
A=3^2013(3+3^2+3^3+3^4)
A=3^2013 x 120 chia hết cho 120 (ĐCPCM)
Cho A=1*2*3*...*2015*2016*(1+1/2+1/3+...+1/2015+1/2016)
Chứng tỏ rằng A là số tự nhiên chia hết cho 2017
bai 1 chung minh rang :
2016^2015 + 2016 ^2014 chia het cho -2017
s = 1+3+3^2 + ... +3^118 + 3^119 chia het cho -13 va 41
Cho a=4+2^2+2^3+2^4+.......+2^2015+2^2016,chứng tỏ rằng a chia hết cho 2^2017
To kHong biet cau nay nhung mong cau thi tot
Đặt A = 4 + 22 + 23 + 24 + .... + 22015 + 22016
=> 2A = 8 + 23 + 24 + 25 + ... + 22016 + 22017
=> 2A - A = (8 + 23 + 24 + 25 + ... + 22016 + 22017) - (4 + 22 + 23 + 24 + .... + 22015 + 22016)
=> A = 8 + 22017 - 4 - 22 = 22017
Vì A = 22017
=> A \(⋮\)22017
tính A=1•2•3•...•2015•2016•(1+1/2+1/3+...+1/2014+1/2015+1/2016)
a chia hết cho 2017
Cho A=1.2.3...2015.2016(1+1/2+1/3+...+ 1/2015+1/2016)
Chứng tỏ rằng A là số tự nhiên chia hết cho 2017
Chứng tỏ :
a) 5^2017+5^2016+5^2015 chia hết cho 31
b) 1+7+7^2+7^3+...+7^101 chia hết cho 8
a )
Ta có :
\(5^{2017}+5^{2016}+5^{2015}\)
\(=5^{2015}\left(5^2+5+1\right)\)
\(=5^{2015}.31⋮31\left(đpcm\right)\)
b )
Số lượng số dãy số trên là :
\(\left(101-0\right):1+1=102\)( số )
Do \(102⋮2\)nên ta nhóm 2 số liền nhau thành 1 nhóm như sau :
\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8\)
\(=8\left(1+7^2+...+7^{100}\right)⋮8\left(đpcm\right)\)
cho A=(-1)+2+(-3)+4+(-5)+6+.........+2014+(-2015)+2016.
chứng minh a chia hết cho 3
Ta có A = [ (- 1) + 2 ] + [ (- 2) + 3 ) ] + [ (-3) + 4 ] + ..... + [ (- 2015) + 2016 ]
= 1 + 1 + 1 + ..... + 1 ( có [ ( 2016 - 1 ) + 1 ] : 2 = 1008 chữ số 1 )
= 1x1008 = 1008
Vì 1008 chia hết cho 3 => A chia hết cho 3 ( điều phải chứng minh )
Cho A=3^1+3^2+3^3+3^4+....+3^2015+3^2016.Chứng tỏ rằng A chia hết chi 4 và 13.
\(A=3+3^2+...+3^{2016}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2015}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{2015}\right)\)
Vậy A chia hết cho 4
_____________
\(A=3+3^2+3^3+...+3^{2016}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(A=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{2014}\cdot\left(1+3+9\right)\)
\(A=13\cdot\left(3+3^4+...+3^{2014}\right)\)
Vậy A chia hết cho 13