Tìm tất cả các số nguyên tố p sao cho \(p^2-p+1\) là lập phương của một số tự nhiên
a)Tìm số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
b)Tìm số nguyên tố p để 13p+1 là lập phương của 1 số tự nhiên
c)Tìm tất cả các số tự nhiên x;y sao cho x2-2y2=1
Câu a =13
Câu b =2 con câu c lam tuong tu
Tìm tất cả các số nguyên tố p sao cho
\(\frac{p^2-p-2}{2}\)là lập phương của một số tự nhiên
Giả sử tồn tại số \(p\)thỏa mãn.
Ta đặt \(\frac{p^2-p-2}{2}=a^3\).
- \(p=2\)thỏa mãn.
- \(p>2\)do là số nguyên tố nên \(p\)lẻ.
Ta có: \(\frac{p^2-p-2}{2}=a^3\Leftrightarrow p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)\)suy ra \(p\)là ước của \(a+1\)hoặc \(a^2-a+1\).
+) \(p|a+1\): \(\frac{p^2-p-2}{2}=a^3\)suy ra \(a< p\Rightarrow a+1=p\).
Thế vào cách đặt ban đầu ta được \(\frac{\left(a+1\right)^2-\left(a+1\right)-2}{2}=a^3\Leftrightarrow2a^3-a^2-a+2=0\)
\(\Leftrightarrow a=-1\)không thỏa.
+) \(p|a^2-a+1\): Đặt \(a^2-a+1=kp\)(1).
\(p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)=2\left(a+1\right)kp\)
\(\Rightarrow p-1=2\left(a+1\right)k\Leftrightarrow p=2k\left(a+1\right)+1\)thế vào (1):
\(a^2-a+1=k\left[2k\left(a+1\right)+1\right]\)
\(\Leftrightarrow a^2-\left(2k^2+1\right)a-2k^2-k+1=0\)
\(\Delta=\left(2k^2+1\right)^2-4\left(-2k^2-k+1\right)=4k^4+12k^2+4k-3\).
Ta cần tìm số tự nhiên \(k\)để \(\Delta\)là số chính phương.
Ta có: \(4k^4+12k^2+4k-3>4k^4+8k^2+4=\left(2k^2+2\right)^2\)
\(4k^4+12k^2+4k-3< 4k^4+16k^2+16=\left(2k^2+4\right)^2\)
Theo nguyên lí kẹp suy ra \(4k^4+12k^2+4k-3=\left(2k^2+3\right)^2\)
\(\Leftrightarrow4k-3=9\Leftrightarrow k=3\).
Với \(k=3\): \(a^2-19a-20=0\Rightarrow a=20\Rightarrow p=127\).
Vậy \(p\in\left\{2,127\right\}\).
tìm tất cả các số nguyên tố p để 2p+1 là lập phương của một số tự nhiên
Tìm tất cả các số nguyên tố p sao cho \(\frac{p^2-p-2}{2}\)là lập phương của một số tự nhiên.
Bài 1. Chứng minh rằng: a) A = abc + bca + cba không là số chính phương. b) ababab không là số chính phương.
Bài 2. Tìm tất cả các số có bốn chữ số vừa là số chính phương, vừa là lập phương của một số tự nhiên.
Bài 3. Tìm số nguyên tố sao cho + là số chính phương.
1.Tìm tất cả các cặp số tự nhiên (x;y) thỏa mãn phương trình: \(\left(x+1\right)^4-\left(x-1\right)^4=y^3\)
2. Tìm tất cả các số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
Tìm các số nguyên tố p sao cho 13p + 1 là lập phương của một số tự nhiên.
Đặt \(13p+1=n^3\left(n\in N\right)\)
\(\Leftrightarrow13p=n^3-1\)
\(\Leftrightarrow13p=\left(n-1\right)\left(n^2+n+1\right)\)
Trường hợp 1: \(n-1=13\forall n^2+n+1=p\)
\(\Leftrightarrow n=14\)
hay \(p=14^2+14+1=196+14+1=211\)(nhận)
Trường hợp 2: \(n-1=p\forall n^2+n+1=p\)
\(\Leftrightarrow n^2+2=13-p\)
\(\Leftrightarrow\left(p+1\right)^2=11-p\)
\(\Leftrightarrow p=2\)(nhận)
Vậy: \(p\in\left\{2;211\right\}\)
1. Tìm số nguyên tố a biết rằng 2a + 1 là lập phương của một số nguyên tố
2.Tìm các số nguyên tố p để 13p + 1 là lập phương của một số tự nhiên
1.Với a = 2 ta có 2a + 1 = 5 không thích hợp
Với a ≠ 2 do a là số nguyên tố nên a lẽ
Vậy 2a + 1 là lập phương của một số lẽ nghĩa là
Từ đó k là ước của a. Do k là số nguyên tố nên k = 1 hoặc k = a
-Nếu k = 1 thì 2a + 1 = (2.1 + 1)3 suy ra a = 13 thớch hợp
- Nếu a = k từ a = a(4a2 + 6a + 3) do a là nguyên tố nên suy ra
1 = 4a2 + 6a + 3 không có số nguyên tố a nào thoả món phương trỡnh này Vì vế phải luụn lớn hơn 1
Vậy a = 13
2.Giả sử
13 và p là các số nguyên tố , mà n – 1 > 1 và n2 + n + 1 > 1
Nên n – 1 = 13 hoặc n – 1 = p
- Với n – 1 =13 thì n = 14 khi đó 13p = n3 – 1 = 2743 suy ta p = 211 là số nguyên tố
- Với n – 1 = p thi n2 + n + 1 = 13 suy ra n = 3 . Khi đó p = 2 là số nguyên tố
Vậy p = 2, p = 211 thì 13p + 1 là lập phương của một số tự nhiên
Tìm các số nguyên tố p sao cho 7p+1 là lập phương của một số tự nhiên
Đặt 7p + 1 = n^3 (n > 2)
=> 7p = (n - 1)(n^2 + n + 1)
Ta có 2 TH :
TH1 : n - 1 = 7 \(\forall\)n^2 + n +1 = p => n = 8 => p = 73
TH2 : n - 1 = p \(\forall\) n^2 + n + 1 =7 => ....
Lời giải:
Đặt với là số tự nhiên.
Đến đây có các TH:
TH1:
(tm)
TH2:
hoặc
hoặc (không thỏa mãn)
TH3: (dễ loại)
TH4: (cũng dễ loại)