Tìm tất cả các số nguyên n sao cho: n^2+3n+1 là 1 lũy thừa của 3
tìm tất cả số nguyên n sao cho n^2 + 3n + 1 là một lũy thừa của 3
Tìm tất cả các số tự nhiên n sao cho \(n^3+3n^2+n+3\) là lũy thừa của một số nguyên tố
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm tất cả các số nguyên n sao cho \(\dfrac{n+1}{3n-2}\)là phân số có giá trị là số nguyên
Tìm tất cả cá số nguyên a sao cho a2 +a +1 là một lũy thừa của 3
a) Tìm số nguyên n sao cho : n + 2 chia hết cho n - 3
b) Tìm tất cả các số nguyên n biết : (6n + 1) chia hết cho (3n - 1)
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
Tìm tất cả các số nguyên dương n sao cho 3n2 + 10n + 3 là lũy thừa của một số nguyên tố.
Tìm tất cả các số nguyên n sao cho 3n + 1 chia hết cho n-2
3n + 1 chia hết cho n - 2
⇒ 3n - 6 + 7 chia hết cho n - 2
⇒ 3(n - 2) + 7 chia hết cho n - 2
⇒ 7 chia hết cho n - 2
⇒ n - 2 ∈ Ư(7) = {1; -1; 7; -7}
⇒ n ∈ {3; 1; 9; -5}