Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
★Čүċℓøρş★
Xem chi tiết
Thanh Tùng DZ
9 tháng 1 2018 lúc 19:00

Ta có :

A = 2 + 22 + ... + 22010

A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

A = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )

A = 2 . 3 + 23 . 3 + ... + 22009 . 3

A = 3 . ( 2 + 23 + ... + 22009 ) \(⋮\)3

A = 2 + 22 + ... + 22010

A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )

A = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 22008 . ( 1 + 2 + 22 )

A = 2 . 7 + 24 . 7 + ... + 22008 . 7

A = 7 . ( 2+ 24 + ... + 22008 ) \(⋮\)7

B = 3 + 32 + ... + 32010

B = ( 3 + 32 ) + ... + ( 32009 + 32010 ) 

Làm tương tự chứng minh được B \(⋮\)4

B = 3 + 32 + ... + 32010

B = ( 3 + 32 + 33 ) + ... + ( 32008 + 32009 + 32010 )

Làm tương tự chứng minh được B \(⋮\)13

a, \(A=2+2^2+...+2^{2010}\)

\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(\Leftrightarrow A=2.3+2^3.3+...+2^{99}.3\)

\(\Leftrightarrow A=3\left(2+2^2+...+2^{99}\right)\)chia hết cho 3 

Lạc Dao Dao
9 tháng 1 2018 lúc 19:11

a) Ta có : A=(2+23+25)+(22+24+26)+.....+(22006+22008+22010)

                  A=2.(1+22+24)+22.(1+22+24)+...+22006.(1+22+24)

                A=2.21            +22.21             +...+22006.21

                A= 21.(2+22+...+22006)

                A=3.7.(2+22+....+22006)   chia hết cho cả 3 và 7

b)b1. Ta có : B=(3+32)+...+(32009+32010)

                    B=3.(1+3)+...+32009.(1+3)

                    B=3.4        +...+32009.4

                    B= 4.(3+...+32009) chia hết cho 4

b2)Ta có : B= (3+32+33)+...+(32008+32009+32010)

                 B=3.(1+3+32)+...+32008.(1+3+32)

                 B= 3.13    +.....+32008.13

                 B=13.(3+.....+32008) chia hết cho 13

NHỚ KICK CHO MÌNH NHA

Thân Thị Thanh Thảo
Xem chi tiết
Lionel Messi
Xem chi tiết
Nguyễn Thị Thương Hoài
29 tháng 12 2023 lúc 20:53

A = n3 + n2 + 3

   n ⋮ 3⇒ n2 ⋮ 3

⇒ n2 ⋮ 32 (Tính chất của một số chính phương)

⇒ n2 ⋮ 9 

 ⇒  n2.n ⋮ 9

⇒n2.n + n2 ⋮ 9; mà  3 không chia hết cho 9 

⇒ n2.n + n2 + 3 không chia hết cho 9

Nguyen Ngoc My
Xem chi tiết
nhem
Xem chi tiết
De Thuong
22 tháng 12 2015 lúc 9:24

Minh lam cau A) thoi duoc hong

Nguyễn Huỳnh Tuấn Kiệt
Xem chi tiết
Nguyen Thuy Anh
4 tháng 12 2014 lúc 16:16

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

Ngô Lê Bách
10 tháng 12 2014 lúc 10:48

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

Bách
4 tháng 2 2017 lúc 12:57

em chịu!!!!!!!!!!!

Vũ lệ Quyên
Xem chi tiết
Trần Đình Anh
Xem chi tiết
Nguyễn Thùy Linh
25 tháng 7 2017 lúc 8:31

1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10

A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)

A= 3.( 2^1+2^3+2^5+...+2^1005)

Do 3 \(⋮\)3 => A\(⋮\)3

Ta có: A =.....

A= Ghép 3 số lại

A= 7. (2^1+ 2^4+...+2^670)

Do 7 \(⋮\)7 => A \(⋮\)7

2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi

Duyệt nhanh....

nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa