tìm tất cả các số nguyên x thỏa mãn x^3 + 8 = \(7\sqrt{8x+1}\)
2 cách nha ! cảm ơn !
Tìm tất cả các cặp số (x; y) với x; y là các số nguyên thỏa mãn y3 - 2 = x (x2 + 2x +3).
GIÚP MÌNH VỚI! CẢM ƠN TRƯỚC NHA!
bài này đc sài máy tính hem. cách sài máy tính lẹ hơn
nếu đc dùng máy tỉnh bỏ túi thì lập trình trong máy vinacal hoặc casio như sau:
x=x+1:y= căng bậc ba của x(x^2+2x+3)+2
hổng bik viết dấu căng bậc ba
gán cho x chạy tuef 1 thử kím cái nào y nguyên lun thì lấy, khỏi mất công phân tích hé hé:)))
Tìm tất cả các số nguyên x, y thỏa mãn:
x^2-xy=5x-4y-9
Trình bày đầy đur nha, mình cảm ơn
1. Tìm tất cả các số nguyên x, y thỏa mãn : x(2y+3)=y+1.
2. Tìm tất cả các số nguyên X thỏa mãn
a) (x+2) là bội của (×^2-7)
b) (-1)+3+(-5)+7+...+x=2002.
Giải giúp mình đi . Giải cụ thể nhé.
Bài 1:Tìm tất cả các cặp số tự nhiên (x,y) thỏa mãn: \(2^x\cdot x^2=9y^2+6y+16.\)
Bài 2: Tìm tất cả các cặp số nguyên (x,y) thỏa mãn: \(\left(x+1999\right)\left(x+1975\right)=3^y-81.\)
Bài 3: Chứng minh rằng với mọi số nguyên tố p thì \(5^p-2^p\)không thể là lũy thừa lớn hơn 1 của 1 số nguyên dương.
Bài 4: Tìm tất cả các cặp số nguyên dương (m,n) thỏa mãn \(6^m+2^n+2\)là số chính phương.
Bài 5: Tìm tất cả các số nguyên dương x,y,z thỏa mãn \(x^2+2^{y+2}=5^z.\)
MỌI NGƯỜI GIÚP MÌNH ĐƯỢC BÀI NÀO THÌ GIÚP NHÉ. CẢM ƠN NHIỀU.
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Bài 4:
Ta đặt: \(S=6^m+2^n+2\)
TH1: n chẵn thì:
\(S=6^m+2^n+2=6^m+2\left(2^{n-1}+1\right)\)
Mà \(2^{n-1}+1⋮3\Rightarrow2\left(2^{n-1}+1\right)⋮6\Rightarrow S⋮6\)
Đồng thời S là scp
Cho nên: \(S=6^m+2\left(2^{n-1}\right)=\left(6k\right)^2\)
\(\Leftrightarrow6^m+6\left(2^{n-2}-2^{n-3}+...+2-1\right)=36k^2\)
Đặt: \(A\left(n\right)=2^{n-2}-2^{n-3}+...+2-1=2^{n-3}+...+1\)là số lẻ
Tiếp tục tương đương: \(6^{m-1}+A\left(n\right)=6k^2\)
Vì A(n) lẻ và 6k^2 là chẵn nên: \(6^{m-1}\)lẻ\(\Rightarrow m=1\)
Thế vào ban đầu: \(S=8+2^n=36k^2\)
Vì n=2x(do n chẵn) nên tiếp tục tương đương: \(8+\left(2^x\right)^2=36k^2\)
\(\Leftrightarrow8=\left(6k-2^x\right)\left(6k+2^x\right)\)
\(\Leftrightarrow2=\left(3k-2^{x-1}\right)\left(3k+2^{x-1}\right)\)
Vì \(3k+2^{x-1}>3k-2^{x-1}>0\)(lớn hơn 0 vì 2>0 và \(3k+2^{x-1}>0\))
Nên: \(\hept{\begin{cases}3k+2^{x-1}=2\\3k-2^{x-1}=1\end{cases}}\Leftrightarrow6k=3\Rightarrow k\notin Z\)(loại)
TH2: n là số lẻ
\(S=6^m+2^n+2=\left(2k\right)^2\)(do S chia hết cho 2 và S là scp)
\(\Leftrightarrow3\cdot6^{m-1}+2^{n-1}+1=2k^2\)là số chẵn
\(\Rightarrow3\cdot6^{m-1}+2^{n-1}\)là số lẻ
Chia tiếp thành 2TH nhỏ:
TH2/1: \(3\cdot6^{m-1}\)lẻ và \(2^{n-1}\)chẵn với n là số lẻ
Ta thu đc: m=1 và thế vào ban đầu
\(S=2^n+8=\left(2k\right)^2\)(n lớn hơn hoặc bằng 3)
\(\Leftrightarrow2^{n-2}+2=k^2\)
Vì \(k^2⋮2\Rightarrow k⋮2\Rightarrow k^2=\left(2t\right)^2\)
Tiếp tục tương đương: \(2^{n-2}+2=4t^2\)
\(\Leftrightarrow2^{n-3}+1=2t^2\)
\(\Leftrightarrow2^{n-3}\)là số lẻ nên n=3
Vậy ta nhận đc: \(\left(m;n\right)=\left(1;3\right)\)
TH2/2: \(3\cdot6^{m-1}\)là số chẵn và \(2^{n-1}\)là số lẻ
Suy ra: n=1
Thế vào trên: \(6^m+4=4k^2\)
\(\Leftrightarrow6^m=\left(2k-2\right)\left(2k+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}2k-2=6^q\\2k+2=6^p\end{cases}}\Rightarrow p+q=m\)
Và \(6^p-6^q=4\)
\(\Leftrightarrow6^q\left(6^{p-q}-1\right)=4\Leftrightarrow6^q\le4\Rightarrow q=1\)(do là tích 2 stn)
\(\Rightarrow k\notin Z\)
Vậy \(\left(m;n\right)=\left(1;3\right)\)
P/S: mk không kiểm lại nên có thể sai
Tìm tất cả các cặp số nguyên dương (x; y) thỏa mãn phương trình
\(x^2+x+13=y^2\) mong được giúp đỡ cảm ơn nhiều
\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)
Tới đây giải ra các trường hợp thui
a. Tìm tất cả các số nguyên x thỏa mãn -5<x<5
b. Tìm tất cả các giá trị nguyên của x thỏa mãn:
(-1) + 3 + (-5) + 7 + ... + x = 2002
Answer:
a. \(-5< x< 5\)
\(\Rightarrow x\in\left\{\pm4;\pm3;\pm2;\pm1;0\right\}\)
Tổng các số nguyên x thoả mãn:
\((-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4\)
\(= (4 - 4) + (3 - 3) + (2 - 2) + (1 - 1) + 0\)
\(=0\)
a)Tìm tất cả các cặp số nguyên x, y thỏa mãn:x(2y+3)=y+1
b) Tìm tất cả các số nguyên của x thỏa mãn:(-1)+3(-5)+7 ...+ x = 2002
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........
a) Tìm tất cả các cặp số (a;b) thỏa mãn |a+2|+|a+3|+|a+4|=2-b^2
b) Cho x,y > bằng 0; x+y=1. Tìm giá trị lớn nhất của P=x^2+y^2.
Giup mình nha, cảm ơn bạn
Tìm tất cả các số thực thỏa mãn:
\(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)
\(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)(*)
Ta có (*) <=> \(\left[\left(x^2+1\right)y-4x\right]^2+\sqrt{x^2-2x-y^2+9}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)y-4x=0\\x^2-2x-y^3+9=0\end{cases}\Leftrightarrow\hept{\begin{cases}yx^2-4x+y=0\left(1\right)\\x^2-2x-y^3+9=0\left(2\right)\end{cases}}}\)
Nếu y=0 thì từ (1) => x=0, thay vào (2) không thỏa mãn
Nếu y\(\ne\)0 ta coi (1) và (2) là phương trình bậc hai ẩn x
Điều kiện để có nguyên x là: \(\hept{\begin{cases}\Delta_1=4-y^2\ge0\\\Delta_2=y^3-8\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}-2\le y\le2\\y\ge2\end{cases}\Leftrightarrow}y=2}\)
Thay y=2 vào hệ (1), (2) ta được \(\hept{\begin{cases}2x^2-4x+2=0\\x^2-2x+1=0\end{cases}\Leftrightarrow x=1}\)
Vậy x=1; y=2