Những câu hỏi liên quan
Lê Văn Minh
Xem chi tiết
Phạm Thị Mai Anh
21 tháng 5 2020 lúc 18:23

tju6i

Bình luận (0)
 Khách vãng lai đã xóa
Hieu Tran
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Lập nick ms
Xem chi tiết
Trần Thùy Dung
27 tháng 1 2016 lúc 12:12

BÀI TOÁN PHỤ: CHứng minh rằng số chính phương lẻ chia cho 8 dư 1.

Giải: Xét số chính phương lẻ là \(m^2\left(m\in Z\right)\)

Như vậy m là số lẻ, đặt \(m=2n+1\)

Ta có:

\(m^2=\left(2n+1\right)^2=4n^2+4n+1=4.n.\left(n+1\right)+1\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2

\(\Rightarrow4n\left(n+1\right) \) chia hết cho 8

\(\Rightarrow4.n.\left(n+1\right)+1\) chia 8 dư 1

Vậy ta có điều phải chứng minh.

Vì a lẻ nên \(a\ne0\), phương trình \(ax^2+bx+c=0\) là phương trình bậc hai.

Xét \(\Delta=b^2-4ac\): b lẻ, theo bài toán phụ có \(b^2=8k+1\left(k\in Z\right)\)

a,c lẻ \(\Rightarrow\) \(ac\) lẻ

Đặt \(ac=2l-1\left(l\in Z\right)\)

Do đó \(\Delta=b^2-4ac=8k+1-4.\left(2l-1\right)=8k+1-8l+4=8\left(k-l\right)+5 \)chia cho 8 dư 5, theo bài toán phụ trên ta có \(\Delta\) không phải số chính phương.

\(\Delta\) là số nguyên, không phải óố chính phương \(\Rightarrow\sqrt{\Delta}\) là số vô tỉ

Nghiệm của phương trình đã cho (nếu có) là: \(x=\frac{-b\pm\sqrt{\Delta}}{2a}\)

b,a\(\in Z\)\(\sqrt{\Delta}\) vô tỉ nên x là vô tỉ.

Vậy phương trình có nghiệm nếu có thì các nghiệm ấy không thể là số hữu tỉ.

  

  


ơng   là phươngax2+bx+c=0

 

 

 

Bình luận (1)
Nhật Minh
27 tháng 1 2016 lúc 12:55

Bài này có sự liên quan giữa các số lẻ a;b;c không? ( không = khó )

Bình luận (0)
Ham Học Hỏi
23 tháng 2 2018 lúc 19:42

ax^2 +bx +c = 0 (*)
(*) có nghiệm hữa tỷ <=> Δ = b^2 - 4ac là số chính phương lẻ
(vì 4ac chẵn và b lẻ)
Δ là số chính phương lẻ nên Δ chia 8 dư 1 (*)
với a, b , c là số nguyên lẻ nên có dạng:
a = 2m + 1; b = 2n +1; c = 2p + 1 ( m,n,p là số nguyên)
=> Δ = (2n +1)^2 - 4(2m+1)(2p+1)
= 4n^2 + 4n + 1 - 4(4mp + 2m + 2p + 1)
= 4n(n+1) - 8(mp + m + p) - 3 = 4n(n+1) - 8(mp + m + p) - 8 + 5
vì 4n(n+1) - 8(mp + m + p) - 8 chia hết cho 8 => Δ chia 8 dư 5 mâu thuẩn với (*)
=> đpcm.
-------------------------
chứng minh (*):
A = (2k+1)^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1
k(k + 1) là tích 2 số nguyên liêu tiếp chia hết cho 2
=> 4k(k + 1) chia hết cho 8
=> A chia 8 dư 1

Bình luận (0)
Phung HUy Long
Xem chi tiết
Từ Tuấn Thành
Xem chi tiết
Kira
Xem chi tiết
Frisk
Xem chi tiết
I don
22 tháng 4 2018 lúc 14:50

Gọi nghiệm nguyên của P(x) là: k

ta có: \(ak^3+bk^2+ck+d=0\)

\(k.\left(ak^2+bk+k\right)=-d\)( *)

ta có: \(P_{\left(1\right)}=a+b+c+d\)

\(P_{\left(0\right)}=d\)

mà P(1); P(0) là các số lẻ

=> a+b+c+d và d là các số lẻ

mà d là số lẻ

=> a+b+c là số chẵn

Từ (*) => k thuộc Ư(d)

mà d là số lẻ

=> k là số lẻ

=> \(k^3-1;k^2-1;k-1\)là các số chẵn

\(\Rightarrow a\left(k^3-1\right)+b\left(k^2-1\right)+c\left(k-1\right)\) là số chẵn

\(=\left(ak^3+bk^2+ck\right)-\left(a+b+c\right)\)

mà a+b+c là số chẵn

\(\Rightarrow ak^3+bk^2+c\) là số chẵn

Từ (*) => d là số chẵn ( vì d là số lẻ)

=> P(x) không thể có nghiệm nguyên

Bình luận (0)
Ngọc Vĩ
Xem chi tiết
Thầy Giáo Toán
29 tháng 8 2015 lúc 9:23

Giả sử rằng \(r=\frac{p}{q}\) là nghiệm hữu tỉ của phương trình, trong đó \(p,q\) là các số nguyên, nguyên tố cùng nhau (tức phân số \(\frac{p}{q}\) tối giản).

Ta có ngay \(ap^2+bpq+q^2c=0\to4a^2p^2+4abpq+4acq^2=0\to\left(2ap+bq\right)^2=\left(bq\right)^2-4acq^2\)

Nếu q là số chẵn thì \(ap^2\) là số chẵn và do đó p chẵn, mâu thuẫn với tính nguyên tố cùng nhau.

Nếu q là số lẻ thì \(bq,2ap+bq\) là các số lẻ. Mặt khác một số chính phương lẻ luôn chia 8 dư 1 nên ta

suy ra \(\left(2ap+bq\right)^2-\left(bq\right)^2\vdots8.\) Do đó \(4acpq\vdots8\to acpq\vdots2\to p\vdots2\). Từ phương trình đầu suy ra \(cq^2\vdots2\to q\vdots2\), vô lí.

Bình luận (2)
shitbo
21 tháng 4 2020 lúc 12:41

Cách khác:

Đặt \(a=2p+1;b=2q+1;c=2r+1\left(p,q,r\in Z\right)\)

Giả sử phương trình \(ax^2+bx+c=0\) không có nghiệm hữu tỉ thì \(\Delta=b^2-4ac\) phải là số chính phương

Ta có:\(\Delta=\left(2q+1\right)^2-4\left(2r+1\right)\left(2p+1\right)\)

\(=4q^2+4q+1-\left(8r-4\right)\left(2p+1\right)\)

\(=4q^2+4q+1-\left(16pr+8r-8p-4\right)\)

\(=4q^2+4q-16pr+8r-8p+5\)

\(=8\left[\frac{q\left(q+1\right)}{2}-2pr+r-p\right]+5\equiv5\left(mod8\right)\)

vô lý vì số chính phương lẻ không thể chia 8 dư 5

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
trường
9 tháng 6 2022 lúc 9:31

a ơi tại sao b^2-4ac là số chính phương ạ

Bình luận (0)