Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kaito
Xem chi tiết
pham thuy duyen
Xem chi tiết
Phạm Thái Dương
26 tháng 2 2017 lúc 8:47

-1

Bài này là toán lớp 3 à

phannhattan
16 tháng 3 2017 lúc 21:17

bài toán lớp 6 mới đúng chớ

Nguyễn Thanh Hà
Xem chi tiết
Nguyễn Thị Kim Thoa 1977...
Xem chi tiết
Hn . never die !
16 tháng 3 2020 lúc 21:07

\(\text{GIẢI :}\)

ĐKXĐ : \(a\ne\pm1\).

\(M=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a^3-a}\right):\frac{a^2-2a+1}{a+a^3}\)

\(=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)

\(=\frac{1}{a^2-2a+1}-\left(\frac{a^2}{a\left(a^2-1\right)}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)

\(=\frac{1}{a^2-2a+1}-\frac{a^2-1}{a\left(a^2-1\right)}:\frac{\left(a-1\right)^2}{a\left(1+a^2\right)}\)

\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{a\left(a^2-1\right)}\cdot\frac{a\left(a^2+1\right)}{1+a^2}\)

\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{1+a^2}=\frac{-a^2}{\left(a-1\right)^2}\).

Khách vãng lai đã xóa
Sarah
Xem chi tiết
Dương Đức Hiệp
5 tháng 4 2016 lúc 6:46

tên kì lạ

do minh hieu
Xem chi tiết
Kaori Miyazono
2 tháng 2 2018 lúc 12:09

Ta có \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(=\frac{a^3+2a^2+2a+1-2a-2}{a^3+2a^2+2a+1}\)

\(=\frac{a^3+2a^2+2a+1}{a^3+2a^2+2a+1}-\frac{2a-2}{a^3+2a^2+2a+1}\)

\(=1-\frac{2a-1}{a^3+2a^2+2a+1}\)

Kim Tuyết Hiền
Xem chi tiết
park_shin_hye
11 tháng 4 2017 lúc 20:22

Giải:Ta có:\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(=>A=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}\)

\(=>A=\frac{a^2+a-1}{a^2+a+1}\)

\(=>A=\frac{-1}{1}\)

tk gium minh nha neu thay dung nha!

Nguyễn Trường Phúc
Xem chi tiết
Nguyễn Trường Phúc
8 tháng 4 2016 lúc 19:54

Đặt biểu thức là A.

Ta có:

\(\frac{\left(a^3+a^2\right)+\left(a^2+1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\).

lamnuuyennhi
8 tháng 4 2016 lúc 19:55

=1+1-1 phan 1+1+1

=1 phan 3

Manh Hung
Xem chi tiết
Hoàng Phúc
2 tháng 5 2016 lúc 9:29

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+a+a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)

\(A=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Vậy \(A=\frac{a^2+a-1}{a^2+a+1}\)

bui huynh xuan quyen
2 tháng 5 2016 lúc 9:55

1 8892219

bui huynh xuan quyen
2 tháng 5 2016 lúc 9:55

A=12213213313