Cho 3 số tự nhiên a,b,c. Chứng minh rằng (a-b).(b-c).(c-a) \(⋮2\)
a) Chứng minh rằng trong hai số tự nhiên liên tiếp có một số tự nhiên chhia hết cho 2
b) Chứng minh rằng trong ba số tư nhiên liên tiếp có một số chia hết cho 3
c) Chứng minh tích của hai số chẵn liên tiếp chia hết cho 4
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
a)
gọi 2 số tự nhiên liên tiếp là 2k;2k+1. ta có:
*nêu 2k lẻ=>2k+1 chẳn =>2k+1 chia hết cho 2
*nếu 2k+1 lẻ=> 2k chẳn =>2k chia hết cho 2
vậy DPCM
Chứng minh rằng nếu các số tự nhiên a,b,c thỏa mãn điều kiện a^2 + b^2= c^2 thì abc chia hết cho 60
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 3 \(\Rightarrow\) \(a^2;\)\(b^2\)chia 3 dư 1
khi đó \(a^2+b^2\) chia 3 dư 2 \(\Rightarrow\)\(c^2\) chia 3 dư 2 (vô lý)
\(\Rightarrow\)trường hợp \(a\)và \(b\) không chia hết cho 3 không xảy ra \(\Rightarrow\) \(abc\)\(⋮\)\(3\) \(\left(1\right)\)
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 5 \(\Rightarrow\)\(a^2\) chia 5 dư 1 hoặc 4 cà \(b^2\) chia 5 dư 1 hoặc 4
Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 1 \(\Rightarrow\) \(c^2\) chia 5 dư 2 (vô lí) Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 4 \(\Rightarrow\) \(c^2\) chia 5 dư 0 \(\Rightarrow\) \(c\)\(⋮\)\(5\) Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 1 \(\Rightarrow\) \(c^2\) chia 5 dư 0 \(\Rightarrow\) \(c\) \(⋮\)\(5\)Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 4 \(\Rightarrow\) \(c^2\) chia 5 dư 3 (vô lí). Vậy ta luôn tìm được một giá trị của \(a,\)\(b,\)\(c\)thỏa mãn \(abc\)\(⋮\)\(5\) \(\left(2\right)\)+ Nếu \(a,\)\(b,\)\(c\) không chia hết cho 4 \(\Rightarrow\) \(a^2,\)\(b^2,\)\(c^2\) chia 8 dư 1 hoặc 4
khi đó \(a^2+b^2\) chia 8 dư \(0,\)\(2\)hoặc
\(\Rightarrow\) c2:5 dư 1,4. vô lý => a hoặc b hoặc c chia hết cho 4 (3)
Từ (1) (2) và (3) => abc chia hết cho 60
1) Cho ba số tự nhiền a,b,c thỏa mãn \(a^2+b^2=20c+2\).Chứng minh rằng tồn tại số tự nhiên chỉ toàn chữ số 1 chia hết cho ab
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Cho số tự nhiên ab bằng ba lần tích các chữ số của nó:
a) Chứng minh rằng \(b⋮a\)
b) G sử b=k.a. Chứng minh rằng k là ước của 10
c)Tìm các số ab nói trên
a) Ta có :
\(\overline{ab}=3ab\)
\(\Leftrightarrow\)\(10a+b=3ab\)
\(\Leftrightarrow\)\(b=3ab-10a=a.\left(3b-10\right)\)
Ta thấy \(b=a.\left(3b-10\right)\)\(\Rightarrow\)\(b⋮a\)
b) Ta có :
\(10a+b=3ab\)
\(\Leftrightarrow\)\(10a+ak=3ka^2\)
\(\Leftrightarrow\)\(a.\left(10+k\right)=3ka^2\)
\(\Leftrightarrow\)\(10+k=3ak\)
\(\Leftrightarrow\)\(10=3ak-k\)
\(\Leftrightarrow\)\(10=k.\left(3a-1\right)\)
Vì \(10=k.\left(3a-1\right)\)nên \(k\inƯ\left(10\right)\)
Cho các số tự nhiên khác 0 là a, b, c sao cho p = bc + a, q = ab + c , r = ca + b là số nguyên tố. Chứng minh rằng hai trong các số p, q, r phải bằng nhau.
Cho a,b,c là số tự nhiên .Biết :
a :7 dư 4 ,b:7 dư 3,c : 7 dư 1
Chứng minh rằng: a,] [a +b]chia hết cho 7
b,] tìm số dư khi chia [b+c] cho 7
Cho a,b,c là số tự nhiên .Biết :
a :7 dư 4 ,b:7 dư 3,c : 7 dư 1
Chứng minh rằng: a,] [a +b]chia hết cho 7
b,] tìm số dư khi chia [b+c] cho 7
Cho a,b,c là số tự nhiên .Biết :
a :7 dư 4 ,b:7 dư 3,c : 7 dư 1
Chứng minh rằng: a,] [a +b]chia hết cho 7
b,] tìm số dư khi chia [b+c] cho 7
Số tự nhiên a chia cho 3 dư 1 còn số tự nhiên b chia cho 3 dư 2 hãy chứng tỏ rằng a+b sẽ chia hết cho 3
Vì a chia cho 3 dư 1
\(\Rightarrow\)a có dạng 3k + 1 (\(k\in N\))
Vì b chia cho 3 dư 2
\(\Rightarrow\)b có dạng 3k + 2 (\(k\in N\))
\(\Rightarrow a+b=3k+1+3k+2\)
\(\Rightarrow a+b=\left(3k+3k\right)+\left(1+2\right)\)
\(\Rightarrow a+b=6k+3=3\left(2k+1\right)\)
\(\Rightarrow a+b⋮3\)
\(\RightarrowĐPCM\)