Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Tuan Anh
Xem chi tiết
Andiez
Xem chi tiết
Hồng Trà Nhi
Xem chi tiết
Phuong nga Nguyen
Xem chi tiết
Raterano
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 23:06

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Tuyền xinh gái
Xem chi tiết
Nguyễn Thị Ngọc Linh
Xem chi tiết
Nguyễn Thị Thu Hà
Xem chi tiết
Thỏ Pé Pé
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 4 2021 lúc 21:34

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB\cdot AF=AC\cdot AE\)(đpcm)

Nguyễn Lê Phước Thịnh
15 tháng 4 2021 lúc 21:37

b)Sửa đề: \(\widehat{BAD}=\widehat{BED}\)

Xét tứ giác BDEA có 

\(\widehat{BEA}=\widehat{BDA}\left(=90^0\right)\)

\(\widehat{BEA}\) và \(\widehat{BDA}\) là hai góc cùng nhìn cạnh BA

Do đó: BDEA là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay \(\widehat{BAD}=\widehat{BED}\)(hai góc cùng nhìn cạnh BD)

Nguyễn Huy Tú
15 tháng 4 2021 lúc 21:37

A B C E F D H

a, Xét tam giác AEB và tam giác AFC ta có : 

^AEB = ^AFC = 900

^A chung 

Vậy tam giác AEB ~ tam giác AFC (g.g)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\Rightarrow AE.AC=AF.AB\)