So sánh hai số \(x=\left(\frac{1}{2}\right)^{225}\) và \(y=\left(\frac{1}{3}\right)^{150}\)
Cho \(x=\sqrt{6+2\sqrt{2}.\left(\sqrt{\frac{5}{2}-\sqrt{6}+\sqrt{\left(3\sqrt{a}+1\right)\left(2a-2\right)-\frac{6a^2+6\sqrt{a}-8a-4a\sqrt{a}}{\sqrt{a}-1}+8}}\right)}\) với a là số thực không âm
\(y=\frac{\frac{x-2}{x}+\frac{1}{x-2}}{12-8\sqrt{5}}.\left(-16\right)\)
So sánh x và y
a,Cho A=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\). Hãy so sánh A với \(\frac{-1}{2}\)
b, Cho B=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm x thuộc Z để B có giá trị là 1 số nguyên dương.
Giả sử x,y,z là các số thực khác 0 thỏa mãn \(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+x\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)và \(x^3+y^3+z^3=1\). Tính \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
so sánh:
\(\left(\frac{1}{16}\right)^{250}\)và\(\left(\frac{1}{2}\right)^{1500}\)
(1/2)1500=(1/26)250=(1/64)250
Do 1/16>1/64 =>(1/16)250>(1/64)250
Vậy (1/16)250>(1/2)1500
\(\left(\frac{1}{16}\right)^{250}\) và \(\left(\frac{1}{2}\right)^{1500}\)
=> \(\left(\frac{1}{16}\right)^{250}\) và \(\left(\left(\frac{1}{2}\right)^6\right)^{250}\)
=> \(\frac{1}{16}\) và \(\left(\frac{1}{2}\right)^6\)
=> \(\frac{1}{16}\) và \(\frac{1}{64}\)
=> \(\frac{1}{16}\) > \(\frac{1}{64}\) hay \(\left(\frac{1}{16}\right)^{250}\) > \(\left(\frac{1}{2}\right)^{1500}\)
1/Cho các số thực dương. Chứng minh:\(ax+by+cz+2\sqrt{\left(ab+bc+ca\right)\left(xy+yz+zx\right)}\le\left(a+b+c\right)\left(x+y+z\right)\)
2/Cho 3 số thực tùy ý.Chứng minh: \(2\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le4xyz+\left(x^2+y^2+z^2\right)^{\frac{3}{2}}\)
3/ Với các số thực dương. Chứng minh : \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
4/ Với cácsố thực dương thỏa abc=1.Chứng minh:\(\left(1+\frac{2x}{y}\right)\left(1+\frac{2y}{z}\right)\left(1+\frac{2z}{x}\right)\ge\left(2+x\right)\left(2+y\right)\left(2+z\right)\)
Bai 1: Ap dung BDT Bunhiacopxki ta co:
\(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)
\(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)
\(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)
\(= (a+b+c)(x+y+z)\)
=> \(Q.E.D\)
Tiep bai 4:Ta co:
BDT <=> \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)
Sau khi khai trien con: \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)
Ap dung BDT Cosi ta co:
\(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)
Lam tuong tu ta co: \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)
\(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)
Lam tuong tu ta co: \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)
Cong (1) voi (2) ta co: VT\(≥ 3(xy+yz+zx)\)(*)
Voi cach lam tuong tu ta cung duoc: VT\(≥ 3(x+y+z) \)(**)
Tu (*) va (**) suy ra : \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)
<=> VT \(≥ 2(x+y+z)+xy+yz+zx\)
=> \(Q.E.D\)
1. Rút gọn
a/ \(\frac{7.25-\left(49\right)}{7.24+21}\) b/ \(\frac{2.\left(-13\right).9.10}{\left(-3\right).4.\left(-5\right).26}\)
2. so sánh
a, 3/-4 và -1/-4 b, 15/17 và 25/27
3. Các p/số sau đây đc viết theo quy luật. Hãy quy đồng mẫu các p/số để tìm quy luật đó rồi điền tiếp vào chỗ chấm 1 p/số thik hợp
a. \(\frac{1}{6};\frac{1}{3};\frac{1}{2};\frac{2}{3};....\) b. \(\frac{1}{8};\frac{5}{24};\frac{7}{24};.....\)
1)Tính
a)\(\frac{\left(3^3\right)^2\times\left(2^3\right)^5}{\left(2\times3\right)^6\times\left(2^5\right)^3}\)
2)So sánh
\(5^{1000}\)và\(3^{1500}\)
3)Tìm x biết
\(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{16}\)
3)
\(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{16}\)
⇒ \(\left(\frac{1}{2}\right)^{x+1}=\left(\frac{1}{2}\right)^4\)
⇒ \(x+1=4\)
⇒ \(x=4-1\)
⇒ \(x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!
a./ Cho ba số a, b và c đôi một phân biệt. Giải phương trình:
\(\frac{x}{\left(a-b\right)\left(a-c\right)}\)+ \(\frac{x}{\left(b-a\right)\left(b-c\right)}\)+ \(\frac{x}{\left(c-a\right)\left(c-b\right)}\)= 2.
b./ Cho số a và ba số b, c, d khác a và thỏa mãn điều kiện c + d = 2b. Giải phương trình:
\(\frac{x}{\left(a-b\right)\left(a-c\right)}\)- \(\frac{2x}{\left(a-b\right)\left(a-d\right)}\)+ \(\frac{3x}{\left(a-c\right)\left(a-d\right)}\)= \(\frac{4a}{\left(a-c\right)\left(a-d\right)}\)
\(y=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)
x= -1/2
hãy so sánh x và y
\(y=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{2014^2}-1\right)\)
\(y=\left(\frac{-1.3}{2.2}\right)\left(\frac{-2.4}{3.3}\right)....\left(\frac{-2013.2015}{2014.2014}\right)\)
\(y=-\left(\frac{1.2....2013.3.4...2015}{2.3....2014.2.3....2014}\right)\)
\(y=-\left(\frac{2015}{2014.2}\right)\)
\(y=\frac{-2015}{4028}\)
\(x=\frac{-1}{2}=\frac{-2014}{4028}\)
Vì \(\frac{-2015}{4028}