Chứng minh tổng : B = 3 + 3^2 + 3^3 + 3^4 + ... + 3^21 chia hết cho 13
chứng tỏ tổng : B = 3 + 3^2 + 3^3 + 3^4 + ... + 3^21 chia hết cho 13
3+3^2+3^3+3^4=.........3^21
=3.(1+3+9)+ .............3^19.(1+3+9)
=3.13+..........................+3^19.13
=(3 +...............3^19).13 chia hết cho 13
Chứng minh chia hết
Chứng minh : B= 3^1+3^2+3^3+3^4+...+2^2010 chia hết cho 4 và 13
Chứng minh :B=3^1 + 3^2 + 3^3 +3^4 +...+3^2010 chia hết cho 4 và 13
Chứng minh rằng tổng A=3+32+33+34.....+321chia hết cho 13
GIÚP MÌNH NHÉ!!!MÌNH ĐANG CẦN LẮM....
bài 1/ cho M = 12+122+123+......+1229+1230
chứng minh M chia hết cho 13
bài 2/ cho (5a+17b) chia hết cho 21
chứng minh :(5b-a) chia hết cho 21
bài 3/ chứng tỏ rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3
chứng minh rằng :
a=1+4+42+43+...+42012 chia hết cho 21
b=1+3+32+33+...+311 chia hết cho 13*40
4a=4+42+43+......+42013
4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)
3a=42013-1
a=42013-1
3
Cho tổng S=3+32+33+34+...+390
a)Chứng minh rằng S chia hết cho 4
b)Chứng minh rằng S chia hết cho 13
c)Chứng minh rằng S chia het cho 14
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)