Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Duy
Xem chi tiết
nguyễn quỳnh chi
Xem chi tiết
alibaba nguyễn
16 tháng 11 2016 lúc 13:40

Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)

Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)

Theo đề bài có

\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)

Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)

\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)

\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)

\(\Leftrightarrow-0,5\le2013-A\le0,5\)

\(\Leftrightarrow2012,5\le A\le2013,5\)

Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)

Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)

I lay my love on you
Xem chi tiết
Cố gắng hơn nữa
Xem chi tiết
Diệu Anh Hoàng
Xem chi tiết
Incursion_03
5 tháng 12 2018 lúc 22:32

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

Incursion_03
29 tháng 1 2019 lúc 16:54

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.- 

Incursion_03
29 tháng 1 2019 lúc 18:16

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{x}=0\\x+\frac{y}{2}=0\end{cases}}\)

             \(\Leftrightarrow\hept{\begin{cases}x^2=1\\x=-\frac{y}{2}\end{cases}}\)

             \(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\left(h\right)\hept{\begin{cases}x=-1\\y=2\end{cases}}\)OK ???

Luân Đinh Tiến
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2021 lúc 13:12

\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)

\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)

rrrge
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Trần Thanh Phương
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

cao nam anh
20 tháng 2 2021 lúc 17:33

LOADING...

Khách vãng lai đã xóa
Dũng
Xem chi tiết
Nguyễn Minh Đăng
5 tháng 6 2021 lúc 22:31

Đây là câu bđt của chuyên Quảng Nam vừa thi mà:vvv

Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\left(a,b,c>0\right)\)

Khi đó: \(H=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)

\(=\left(a+b+c\right)-\left(\frac{9ab^2}{9b^2+1}+\frac{9bc^2}{9c^2+1}+\frac{9ca^2}{9a^2+1}\right)\)

\(\ge1-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)

\(=1-\frac{3}{2}\left(ab+bc+ca\right)\ge1-\frac{3}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=1-\frac{3}{2}\cdot\frac{1}{3}=\frac{1}{2}\)

Dấu "=" xảy ra khi: \(x=y=z=3\)

Vậy Min(H) = 1/2 khi x = y = z = 3

Khách vãng lai đã xóa
Trần Công Hưng
Xem chi tiết