Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Hoàng Kỳ
Xem chi tiết
o0o_Tiểu Vũ_o0o
Xem chi tiết
Dương Lam Hàng
22 tháng 8 2018 lúc 15:54

\(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)

\(\Rightarrow\left(3y-2\right)\left(2x+1\right)=-55\)

Mà \(-55=1.\left(-55\right)=\left(-1\right).55\) và ngược lại

Lập bảng ta có:

3y-21-55-155
y1-53/31/319
2x+1-55155-1
x-28027-1

Vậy có 4 cặp số nguyên (x;y) = (-28;1) ; (0; \(\frac{-53}{3}\) ) ; (27; \(\frac{1}{3}\) ) ; (-1;19)

Edogawa Conan
22 tháng 8 2018 lúc 15:55

\(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)

\(\Rightarrow\left(2x+1\right)\left(3y-2\right)=-55\)= -11 . 5 = -5 . 11 = 5 . -11 = 11 . -5 = 1 . -55 =  -55 . 1 = -1 . 55 = 55 . -1 

Với : \(\hept{\begin{cases}2x+1=1\\3y-2=-55\end{cases}\Rightarrow}\hept{\begin{cases}2x=0\\3y=-53\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{-53}{3}\end{cases}}\)=> không thõa mã

         \(\hept{\begin{cases}2x+1=-1\\3y-2=55\end{cases}\Rightarrow}\hept{\begin{cases}2x=-2\\3y=57\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=19\end{cases}}\)

        \(\hept{\begin{cases}2x+1=55\\3y-2=-1\end{cases}\Rightarrow}\hept{\begin{cases}2x=54\\3y=1\end{cases}\Rightarrow}\hept{\begin{cases}x=27\\y=\frac{1}{3}\end{cases}}\)=> ko thõa mãn

        \(\hept{\begin{cases}2x+1=-55\\3y-2=1\end{cases}\Rightarrow}\hept{\begin{cases}2x=-56\\3y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=-28\\y=1\end{cases}}\)

       \(\hept{\begin{cases}2x+1=-5\\3y-2=11\end{cases}\Rightarrow\hept{\begin{cases}2x=-6\\3y=13\end{cases}\Rightarrow}}\hept{\begin{cases}x=-3\\y=\frac{13}{3}\end{cases}}\)=> ko thõa mãn

     \(\hept{\begin{cases}2x+1=5\\3y-2=-11\end{cases}\Rightarrow}\hept{\begin{cases}2x=4\\3y=-9\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

   \(\hept{\begin{cases}2x+1=-11\\3y-2=5\end{cases}\Rightarrow}\hept{\begin{cases}2x=-12\\3y=7\end{cases}}\Rightarrow\hept{\begin{cases}x=-6\\y=\frac{7}{3}\end{cases}}\)=> ko thõa mãn

    \(\hept{\begin{cases}2x+1=11\\3y-2=-5\end{cases}\Rightarrow}\hept{\begin{cases}2x=10\\3y=-3\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=-1\end{cases}}\)

Hoa
Xem chi tiết
Witch Rose
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
hỏi đáp
13 tháng 3 2020 lúc 15:54

có |2x-5| luôn \(\ge0\forall x\in Q\)

cũng có \(\left|3y+1\right|\ge0\forall y\in Q\)

=> \(\left|2x-5\right|+\left|3y-1\right|\ge0\forall x;y\in Q\)

=>\(\hept{\begin{cases}2x-5=0\\3y-1=0\end{cases}}\)<=> \(\hept{\begin{cases}2x=5\\3y=1\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{3}\end{cases}}\) 

vậy \(x=\frac{2}{5};y=\frac{1}{3}\)

em nhớ là phải dùng ngoặc nhọn như trên nhé! Nếu không sẽ sai đấy!

3 câu còn lại cũng tương tự

Khách vãng lai đã xóa
Nguyễn Khánh Linh
13 tháng 3 2020 lúc 16:39

giúp mik câu cuối với các bạn

Khách vãng lai đã xóa
hỏi đáp
13 tháng 3 2020 lúc 16:44

với câu cuối ;Nguyễn Khánh Linh  em chỉ cần tìm x ;  biến đổi vế rồi lắp x vào để giải tiếp

khúc đầu tương tự bài đầu

=> \(\hept{\begin{cases}2x-5=0\\xy-3y+2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y\left(x-3\right)+2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y\left(\frac{2}{5}-3\right)+2=0\end{cases}}\)

em tự giải tiếp

Khách vãng lai đã xóa
Minh Thúy
Xem chi tiết
Lê Đức Khanh
Xem chi tiết
Hoàng Thị Lan Hương
11 tháng 7 2017 lúc 10:56

a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)

\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)

c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)

\(\Rightarrow x=-\frac{3}{5}\)

Lê Đức Khanh
12 tháng 7 2017 lúc 13:46

cảm ơn bạn nhiều nhé 

kb vs mình đi 

kate winslet
Xem chi tiết
Isolde Moria
29 tháng 8 2016 lúc 17:23

Ta có

\(\left|2x-0,\left(24\right)\right|+\left|3y+0,1\left(5\right)\right|=0\)

\(\Rightarrow\left|2x-\frac{24}{99}\right|+\left|3y+0,\left(5\right)-0,4\right|=0\)

\(\Rightarrow\left|2x-\frac{8}{33}\right|+\left|3y+\frac{5}{9}-\frac{4}{5}\right|=0\)

Ta có

\(\begin{cases}\left|2x-\frac{8}{33}\right|\ge0\\\left|3y+\frac{5}{9}-\frac{2}{5}\right|\ge0\end{cases}\)

\(\Rightarrow\begin{cases}2x-\frac{8}{33}=0\\3y+\frac{5}{9}-\frac{2}{5}=0\end{cases}\)

\(\Rightarrow\begin{cases}2x=\frac{8}{33}\\3y=\frac{7}{45}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{4}{33}\\y=\frac{7}{135}\end{cases}\)

Vậy \(\left(x;y\right)=\left(\frac{4}{45};\frac{7}{135}\right)\)

Isolde Moria
29 tháng 8 2016 lúc 17:32

0,1(55) cũng giống 0,1(5) bạn nhé

....
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 7 2021 lúc 14:02

a.

\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
23 tháng 7 2021 lúc 14:04

b.

\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

TH1:

\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

TH2:

\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

Nguyễn Việt Lâm
23 tháng 7 2021 lúc 14:09

c.

\(\left\{{}\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)-12=0\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)

Xét pt:

\(\left(x+y\right)^2-4\left(x+y\right)-12=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y+2=0\\x+y-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=-x-2\\y=6-x\end{matrix}\right.\)

TH1: \(y=-x-2\) thế vào \(\left(x-y\right)^2-2\left(x-y\right)=3\)

\(\Rightarrow\left(2x+2\right)^2-2\left(2x+2\right)=3\)

\(\Leftrightarrow4x^2+4x-3=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\Rightarrow y=-\dfrac{5}{2}\\x=-\dfrac{3}{2}\Rightarrow y=-\dfrac{1}{2}\end{matrix}\right.\)

TH2: \(y=6-x\) thế vào...

\(\left(2x-6\right)^2-2\left(2x-6\right)=3\)

\(\Leftrightarrow4x^2-28x+45=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\Rightarrow y=\dfrac{7}{2}\\y=\dfrac{9}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)