Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Bách
Xem chi tiết
Vũ Nguyễn Minh Thư
17 tháng 11 2023 lúc 18:41

Câu hỏi
# Cho dãy tỉ số bằng nhau ( 2bz-3cy )/a=(3cx az)/2b=(ay-2bx)/3c. Chứng minh: x/a=y/2b=z/3c.
Trả lời
Đáp án:+Giải thích các bước giải:

![image](https://mathresource.studyquicks.com/tiku/seahk_43506b6eddfc9f0c8237d9f9d28c094a.jpg)

bạn tìm trên link này nhá mk ko gửi hình ảnh đc

pham mai linh
Xem chi tiết
trần thị mai
Xem chi tiết
Đức Trần Minh
Xem chi tiết
Pikachu
Xem chi tiết
Chàng Trai 2_k_7
Xem chi tiết
Agatsuma Zenitsu
7 tháng 2 2020 lúc 19:26

Theo đề: \(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)

\(\Rightarrow\frac{2bza-3acy}{a^2}=\frac{6cxb-2bza}{4b^2}=\frac{3ayc-6bxc}{9c^2}\)

\(=\frac{2bza-3cya+6xbc-2bza+3ayc-6bxc}{a^2+4b^2+9c^2}\)

\(=0\)

\(\Rightarrow\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}=0\)

\(\Rightarrow2bz=3cy;3cx=az;ay=2bx\)

\(\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\left(đpcm\right)\)

Khách vãng lai đã xóa
Ekachido Rika
7 tháng 2 2020 lúc 19:44

Ta có: \(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)

\(\Rightarrow\frac{2bzx-3cyx}{ax}=\frac{3cxy-azy}{2by}=\frac{ayz-2bxz}{3xz}\)

\(=\frac{2bzx-3cyx-3cxy-azy-ayz-2bxz}{ax-2by-3xz}=0\)

\(\Rightarrow\)\(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}=0\)

\(\Rightarrow2bz=3cy;\)\(3cx=az;\)\(ay=2bx\)

\(\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\).

Khách vãng lai đã xóa
khanhhuyen6a5
Xem chi tiết
Ngô Tấn Đạt
24 tháng 12 2017 lúc 16:29

\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\\ \Rightarrow\dfrac{2abz-3acy}{a}=\dfrac{6bcx-2abz}{2b}=\dfrac{3acy-6bcx}{3c}\\ =\dfrac{\left(2abz-3acy\right)+\left(6bcx-2abz\right)+\left(3acy-6bcx\right)}{a+2b+3c}\\ =\dfrac{\left(2abz-2abz\right)+\left(3acy-3acy\right)+\left(6bcx-6bcx\right)}{a+2b+3c}=0\\ \)

\(\Rightarrow2bz-3cy=3cx-az=ay-2bx=0\\ \Rightarrow\left\{{}\begin{matrix}2bz=3cy\\3cx=az\\ay=2bx\end{matrix}\right.\)

\(2bz=3cy\Rightarrow\dfrac{2b}{y}=\dfrac{3c}{z}\\ 3cx=az\Rightarrow\dfrac{3c}{z}=\dfrac{a}{x}\\ ay=2bx\Rightarrow\dfrac{a}{x}=\dfrac{2b}{y}\\ \Rightarrow\dfrac{a}{x}=\dfrac{2b}{y}=\dfrac{3c}{z}\Rightarrow.....\)

Cao Hồ Ngọc Hân
Xem chi tiết
Monkey D. Luffy
22 tháng 3 2017 lúc 20:13

dễ mà

Học để khẳng định mình
1 tháng 5 2017 lúc 12:27

t thì chẳng thấy dễ chút nào nhưng t làm dc

Trần Minh Hoàng
8 tháng 4 2020 lúc 19:05

Ta thấy a, b, c \(\ne\) 0 nên a2 + (2b)2 + (3c)2 \(\ne\) 0.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}=\frac{2abz-3cay}{a^2}=\frac{6bcx-2abz}{\left(2b\right)^2}=\frac{3cay-6bcx}{\left(3c\right)^2}\)
\(=\frac{2abz-3cay+6bcx-2abz+3cay-6bcx}{a^2+\left(2b\right)^2+\left(3c\right)^2}\) (Do a2 + (2b)2 + (3c)2 \(\ne\) 0)
\(=\frac{0}{a^2+\left(2b\right)^2+\left(3c\right)^2}=0\)

\(\Rightarrow\left\{{}\begin{matrix}2bz=3cy\\3cx=az\\ay=2bx\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{y}{2b}=\frac{z}{3c}\\\frac{z}{3c}=\frac{x}{a}\\\frac{x}{a}=\frac{y}{2b}\end{matrix}\right.\)

\(\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\)

Nguyễn VIệt Mai Phương
Xem chi tiết
Dương Lam Hàng
8 tháng 1 2019 lúc 8:30

\(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)

Suy ra: \(\frac{a.\left(2bz-3cy\right)}{a.a}=\frac{2b\left(3cx-az\right)}{2b.2b}=\frac{3c.\left(ay-2bx\right)}{3c.3c}\)

\(\Rightarrow\frac{2abz-3acy}{a^2}=\frac{3bcx-abz}{2b^2}=\frac{acy-2cbx}{3c^2}\)

Theo tính chất dãy tỉ số bằng nhau

\(\frac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+2b^2+3c^2}=\frac{0}{a^2+2b^2+3c^2}=0\)

\(\Rightarrow\hept{\begin{cases}2bz=3cy\\3cx=az\\ay=2bx\end{cases}\Rightarrow\hept{\begin{cases}\frac{z}{3c}=\frac{y}{2b}\\\frac{x}{a}=\frac{z}{3c}\\\frac{y}{2b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}}\)

=> đpcm