Gỉai hệ phương trình \(\hept{\begin{cases}x^2y^{2018}-2x+y^2=0\\2x^2-4x+3+y^{2019}=0\end{cases}}\)
Gỉai hệ phương trình\(\hept{\begin{cases}x^2y^{2018}-2x+y^2=0\\2x^2-4x+3+y^{2019}=0\end{cases}}\)
giải hệ phương trình:\(\hept{\begin{cases}2x^2+4x+y^3+3=0\\x^2y^3+y=2x\end{cases}}\)
Ta có: \(\hept{\begin{cases}2x^2+4x+y^3+3=0\left(1\right)\\x^2y^3+y=2x\left(2\right)\end{cases}}\)
Thay (2) vào (1) ta có:
\(2x^2+2.2x+y^3+3=0\)
\(\Leftrightarrow2x^2+2x^2y^3+2y+y^3+3=0\)
\(\Leftrightarrow2x^2\left(y^3+1\right)+\left(2y+2\right)+\left(y^3+1\right)=0\)
\(\Leftrightarrow...\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)=0\)
Dễ chứng minh \(\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)>0\)
\(\Rightarrow y+1=0\)
\(\Rightarrow y=-1\)
Thay vào có x=-1
Giải hệ phương trình sau : \(\hept{\begin{cases}x^2y^2-2x+y^2=0\\2x^2-4x+y^3+3=0\end{cases}}\)
Giải hệ phương trình:
\(1.\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(2.\hept{\begin{cases}2x^3+2z^2+3z+3=0\\2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\end{cases}}\)
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}\frac{3+2x-y}{2x-y}-\frac{6}{x+y}=0\\\frac{1-4x+2y}{2x-y}-\frac{1+2x+2y}{x+y}=0\end{cases}}\)
Hint: đặt \(\frac{1}{2x-y}=a;\frac{1}{x+y}=b\)
Gỉai phương trình và hệ phương trình sau :
a) 3x4 - 4x2 + 1 = 0
b) \(\hept{\begin{cases}2x+y=5\\3x-2y=11\end{cases}}\)
giải các hệ phương trình sau
a) \(\hept{\begin{cases}x^2+y^2-2xy=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
b)\(\hept{\begin{cases}xy+2x-y-2=0\\xy-3x+2y=0\end{cases}}\)
hãy dùng cái đầu bạn nhé :))))
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
109ubbbbbbbhy3333333333333
Đồng bào thân thiện đáng yêu cứu toy với :((
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt[3]{\frac{2x+1}{y+2}}+\sqrt[3]{\frac{y+2}{2x+1}}=2\\4x+3y=7\end{cases}}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{x^2+2y+3}+2y-3=0_{ }\\2\left(2y^3+x^3\right)+3y\left(x+1\right)^2+6x\left(x+1\right)+2=0\end{cases}^{ }}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{2x-3}=\left(y^2+2016\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{cases}}\)
Cảm ơn mọi người nhé hiuhiu <3
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2+2xy+4x-7y^2=0\\2y^2-y-2x+1=0\end{cases}}\)
nhân 4 pt2 rồi cộng pt1 là ra
Trả lời :
- Bn ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ đừng bình luận linh tinh nhé !
- Hok tốt !
^_^