Cho abc = 1 và a + b + c = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)Chứng minh có ít nhất tồn tai một số bằng 1
Cho các số abc thỏa mãn abc = 1 và \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) . Chứng minh rằng trong ba số a , b , c có ít nhất 1 số bằng 1
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)=> \(a+b+c=\frac{ab+bc+ac}{abc}=ab+bc+ac\)
Ta có \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(abc-1\right)+a+b+c-ab-bc-ac=0\)
=> có ít nhất 1 trong 3 số a,b,c bằng 1
Vậy có ít nhất 1 trong 3 số a,b,c bằng 1
Cho a,b,c là các số thực thỏa mãn abc=1 và a+b+c = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Chứng minh có ít nhất 1 trong các số a,b,c bằng 1
biến đổi tương đương đưa về (a-1)(b-1)(c-1)=0
Ta có : \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+c=\frac{ab+bc+ac}{abc}\)
\(\Leftrightarrow a+b+c=ab+bc+ac\left(abc=1\right)\)
\(\Leftrightarrow1+a+b+c-ab-bc-ac-1=0\)
\(\Leftrightarrow abc+a+b+c-ab-bc-ac-1=0\)
\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+c-1=0\)
\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\)a = 1 hoặc b = 1 hoặc c = 1
=> Đpcm
Cho a, b, c là các số thực thỏa mãn abc = 1 và a+b+c= \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)Chứng minh rằng có ít nhất 1 trong ba số a, b, c bằng 1
Thay 1 = abc ta có: \(a+b+c=\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)
<=> a + b + c = bc + ac + ab
<=> (a - ac) + (b - bc) + (c - ab) = 0
<=> a(1 - c) + b(1 - c) + (c - \(\frac{1}{c}\)) = 0
<=> ca(1 - c) + cb(1 - c) + (c - 1)(c + 1) = 0
<=> (1 - c)(ca + cb - c - 1) = 0
<=> (1 - c)[c(a -1) + (cb - abc)]= 0
<=> (1 - c)[c(a - 1) + cb(1 - a)]= 0
<=> (1 - c)(a - 1)(c - cb) = 0
<=> (1 - c)(a - 1)(1 - b).c = 0 <=> a = 1 hoặc b = 1 hoặc c = 1
Vậy....
http://olm.vn/hoi-dap/question/179947.html
cho 3 số a,b,c thuộc R* thỏa mãn : a+b+c=1 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)chứng minh rằng có ít nhất một số bằng 0
Cho 3 số a, b, c khác 0 thỏa mãn: a + b + c = 2017 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)
Chứng minh rằng có ít nhất 1 trong 3 số a, b, c bằng 2017
Thay a+b+c=2017 vào \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\) ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)\(\Rightarrow\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{c\left(b+c\right)+ca+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+ca+ab\right]=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+a\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\)\(a+b=0\) hoặc \(b+c=0\) hoặc \(c+a=0\)
\(\Rightarrow\)\(c=2017\)hoặc \(a=2017\) hoặc \(b=2017\left(đpcm\right)\)
Cho 3 số a,b,c thảo mãn \(a+b+c=2017\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)
Chứng minh rằng ít nhất một trong ba số a,b,c bằng 2017
Câu hỏi của 『-Lady-』 - Toán lớp 8 - Học toán với OnlineMath
Tham khảo ở link trên nha
cho các số nguyên dương a,b,c,d thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
chứng minh rằng truong 4 số đã cho luôn tồn tại ít nhất hai số bằng nha
Giả sử a,b,c,d khác nhau ta có
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\)(trái với giả thiết)
=> điều giả sử là sai => ĐPCM
Giả sử a,b,c,d khác nhau, thì ta sẽ có:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\) (trái với giả thiết)
= > điều giả sử sai = > ĐPCM
Mình làm thế này không biết có đúng không nha.
Vì vai trò của a,b,c,d bình đẳng nên giả sử a<b<c<d
=> a2<b2<c2<d2
=> a2+a2+a2+a2<a2+b2+c2+d2=1
=> a2.4<1
=> a2<0,25
=> -0,5<a<0,5. Mà a nguyên dương
=> Loại
=> ĐPCM.
Cho abc=1 và \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\). CMR: Ít nhất 1 trong 3 số a,b,c có giá trị bằng 1
Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca
=> a + b + c = ab + bc + ca
<=> a + b + c - ab - bc - ca = 0
<=> a + b + c - ab - bc - ac + abc - 1 = 0
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0
<=> (b - 1)(-a + 1 -c + ac) = 0
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0
<=> (a - 1)(b - 1)(c - 1) = 0
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0
<=> a = 1 hoặc b = 1 hoặc c = 1
Từ abc=1=>c=1/ab
Và a+b+c=1/a+1/b+1/c
<=>a+b+1/ab=1/a+1/b+ab
<=>ab-a-b+1-(1/ab-1/a-1/b+1)=0
<=>a(b-1)-(b-1)-1/a(1/b-1)-(1/b-1)=0
<=>(b-1)(a-1)-(1/b-1)(1/a-1)=0
<=>(a-1)(b-1)-(1-b/b)(1-a/a)=0
<=>(a-1)(b-1)-(a-1)(b-1)/ab=0
<=>(a-1)(b-1)(1-1/ab)=0
<=>(a-1)(b-1)(c-1)=0
<=>a-1=0 hoặc b-1=0 hoặc c-1=0
=>a=1 hoặc b=1 hoặc c=1 (đpcm)
Cho a.b.c = 1
và \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.\)
Chứng minh rằng: Trong 3 số a,b,c tồn tại một số bằng 1
ta có: \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow a+b+c=\frac{ba+ac+ab}{abc}\)
mà abc = 1
\(\Rightarrow a+b+c=ba+ac+ab\)
Lại có: (a-1).(b-1).(c-1)
= (ab - a - b + 1) . ( c-1)
= abc - ac - bc + c - ab + a + b - 1
= ( abc - 1) +( a+ b + c ) - ( ac + bc + ab)
= ( 1 - 1) + ( a + b + c) - ( a + b + c)
= 0
=> (a-1).(b-1).(c-1) = 0
=> trong 3 số a;b;c tồn tại một số bằng 1