Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KHANH QUYNH MAI PHAM
Xem chi tiết
Nguyễn Linh Chi
15 tháng 4 2020 lúc 20:39

Hệ phương trình <=> \(\hept{\begin{cases}y=m-mx\\x+m\left(m-mx\right)=1\end{cases}}\)

<=> \(\hept{\begin{cases}y=m-mx\\\left(1-m^2\right)x=1-m^2\left(2\right)\end{cases}}\)

Giải (2): 

TH1: \(1-m^2=0\Leftrightarrow m=\pm1\)

khi đó: (2) trở thành: 0x = 0 có vô số nghiệm => TH1 loại

TH2: \(m\ne\pm1\)

khi đó: (1) <=> x = 1   thay vào tính y = m- m = 0 

Vậy với mọi  \(m\ne\pm1\) hệ luôn có nghiệm duy nhất: (x; y) = ( 1; 0)

Khách vãng lai đã xóa
☆Châuuu~~~(๑╹ω╹๑ )☆
Xem chi tiết
Dark_Hole
18 tháng 3 2022 lúc 21:22

à bài này a nhớ (hay mất điểm ở bài này) ;v

Tuan Nguyen
18 tháng 3 2022 lúc 21:23

xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)

Dark_Hole
18 tháng 3 2022 lúc 21:32

a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)

Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)

b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)

Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)

c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)

Chắc vậy :v

Nghịch Dư Thủy
Xem chi tiết
KHANH QUYNH MAI PHAM
Xem chi tiết
Phạm Thu Huyền
Xem chi tiết
ミ★Ƙαї★彡
21 tháng 8 2020 lúc 17:01

ĐKXĐ : \(x\ne5;2m\)

\(\frac{x+2m}{x-5}-1=\frac{x+5}{2m-x}+1\)

\(\Leftrightarrow\frac{x+2m-x+5}{x-5}=\frac{x+5+2m-x}{2m-x}\)

\(\Leftrightarrow\frac{2m+5}{x-5}=\frac{5+2m}{2m-x}\Leftrightarrow\frac{\left(2m+5\right)\left(2m-x\right)}{\left(x-5\right)\left(2m-x\right)}=\frac{\left(5+2m\right)\left(x-5\right)}{\left(x-5\right)\left(2m-x\right)}\)

\(\Leftrightarrow4m^2-2mx+10m-5x=5x-25+2mx-10m\)

\(\Leftrightarrow4m^2-4mx+20m-10x+25=0\)

Khách vãng lai đã xóa
NGUYỄN ANH KHÔI
Xem chi tiết
Trần Hoàng Bích Phượng
Xem chi tiết
Sarah Garritsen
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
18 tháng 3 2021 lúc 20:00

ĐKXĐ : \(\hept{\begin{cases}x\ne-4\\x\ne-m\end{cases}}\)

a) Để pt có nghiệm x = 4 thì \(\frac{4-m}{8}=2\)=> 4 - m = 16 <=> m = -12 ( tm )

Vậy với m = -12 thì pt có nghiệm x = 4

b) (1) <=> \(\frac{x^2-m^2}{\left(x+4\right)\left(x+m\right)}+\frac{x^2-16}{\left(x+4\right)\left(x+m\right)}=\frac{2\left(x+4\right)\left(x+m\right)}{\left(x+4\right)\left(x+m\right)}\)

=> 2x2 - m2 - 16 = 2x2 + ( 2m + 8 )x + 8m

<=>  \(x=\frac{\left(m+4\right)^2}{2\left(m+4\right)}=\frac{m+4}{2}\)

Vậy pt luôn có nghiệm duy nhất ∀ x ≠ -4 và x ≠ -m

Khách vãng lai đã xóa
Đào Trọng Luân
Xem chi tiết
Nguyễn Minh Quang
21 tháng 12 2020 lúc 17:41

ta có \(\frac{\left(x+2\right)\left(mx+3\right)}{x-1}=0\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(mx+3\right)=0_{ }\left(1\right)\\x-1\ne0\end{cases}}\)

Phương trình có nghiệm duy nhất khi (1) có nghiệm kép hoặc (1) có 2 nghiệm phân biệt trong đó một nghiệm là x=1

th1: (1) có nghiệm kép

\(\Rightarrow m=\frac{3}{2}\)

th2: (1) có 1 nghiệm x=1 

\(\Rightarrow m=-3\)

Khách vãng lai đã xóa