Tìmx,y,z biết:(2x-1)^2016+(y-2/5)^2016+|x+y-z|=0
tìm x;y;z biết: (2x-1)^2016+(y-2/5)^2016+|x+y+z|=0
Có: \(\left(2x-1\right)^{2016}\ge0;\left(y-\frac{2}{5}\right)^{2016}\ge0;\left|x+y+z\right|\ge0\forall x;y;z\)
Mà theo đề bài: \(\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x-1\right)^{2016}=0\\\left(y-\frac{2}{5}\right)^{2016}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{-9}{10}\end{cases}\)
Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{-9}{10}\)
2. Tính P=(1+x/y)*(1+z/x)*(1+z/y). Biết x+y+z=0 và x,y,z #0
3. Tính Q= 5.y^10-y^15+2016. Biết (x+1)^2016+(y-1)^2018=0
2. Tính P=(1+x/y)*(1+z/x)*(1+z/y). Biết x+y+z=0 và x,y,z #0
3. Tính Q= 5.y^10-y^15+2016. Biết (x+1)^2016+(y-1)^2018=0
Tìm x,y,z biết
( 2x-1)2016 + ( y - \(\frac{2}{5}\) )2016 + I x + y - z I = 0
dễ thấy (2x-1)2016, (y-2/5)2016 và /x+y-z/ đều lớn hơn hoặc bằng 0 => mỗi hạng tử trên đều bằng 0 rồi từ đó tính ra
Tìm x,y,z biết
( 2x-1)2016 + ( y - \(\frac{2}{5}\) )2016 + I x + y - z I = 0
Do \(\left(2x-1\right)^{2016}\ge0;\left(y-\frac{2}{5}\right)^{2016}\ge0;\left|x+y-z\right|\ge0\)
Mà theo đề bài: \(\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y-z\right|=0\)
=> \(\begin{cases}\left(2x-1\right)^{2016}=0\\\left(y-\frac{2}{5}\right)^{2016}=0\\\left|x+y-z\right|=0\end{cases}\)=> \(\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\)=> \(\begin{cases}2x=1\\y=\frac{2}{5}\\x+y=z\end{cases}\)=> \(\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\x+y=z\end{cases}\)
=> \(\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}\)
Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{9}{10}\)
|x+5|+(3y-4)^2016=0
(5x-y)^2016+|x^2-4|^2017<=0
(2x-1)^2014+(y-2/5)^2016+|x+y+z|=0
|x-1|+|x-2|+|y-3|+|x-4|=3
1. Cho đa thức f(x)=mx^2+7n. Biết 4m+7n=0. Chứng minh rằng: Đa thức f(x) có nghiệm
2. Tính P=(1+x/y)*(1+z/x)*(1+z/y). Biết x+y+z=0 và x,y,z #0
3. Tính Q= 5.y^10-y^15+2016. Biết (x+1)^2016+(y-1)^2018=0
1.4m+7n=0
=>4m=-7n
=>mx2-4m=0
=>m(x2-4)=0
=>m=0 hoặc x=2 hoặc x=-2
Tìm x;y; z biết
\(\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y+z\right|\)
Tìm x;y;z biết: (x-1)^2016+(y-2)^2016+|x+y-z|=0
Vì (x - 1)2016 ≥ 0 ; (y - 2)2016 ≥ 0 | x + y + z | ≥ 0 với mọi x
Để (x - 1)2016 + (y + 2)2016 + | x + y - z | = 0 khi (x - 1)2016 = 0 ; (y + 2)2016 = 0; | x + y - z | = 0
<=> x - 1 = 0 và y + 2 = 0 => x = 1 và y = - 2
Thay x = 1 và y = - 2 vào BT : | x + y - z | = 0 ta được :
| 1 - 2 - z | = 0 <=> 1 - 2 - z = 0 <=> - 1 - z = 0 => z = - 1
Vậy x = 1 ; y = - 2 ; z = - 1