Cho hình thang ABCD (AB//CD) có AB=4cm, CD=16cm, BD= 8cm.
CM: góc BAD = góc DBC và BC=2AD
Cho hình thang ABCD có AB//CD,AB=4cm,CD=16cm,BD=8cm. Cm góc BAD= góc DBC và BC=2 lần AD
ABDB=48=12" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">ABDB=48=12
BDDC=816=12" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">BDDC=816=12
ABDB=BDDC" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">ABDB=BDDC (chứng minh trên)
ABBD=ADBC=12" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">ABBD=ADBC=12
=> BC = 2AD (điều phải chứng minh)
Hình thang ABCD (AB // CD) có AB= 4cm, CD = 16cm và BD = 8cm. Chứng minh: ∠ (BAD) = ∠ (DBC) và BC =2AD.
Ta có:
Suy ra:
Xét △ ABD và △ BDC, ta có:
∠ (ABD) = ∠ (BDC) (so le trong)
(chứng minh trên)
Vây △ ABD đồng dạng △ BDC (c.g.c) ⇒ ∠ (BAD) = ∠ (DBC)
Tỉ số đồng dạng k = 1/2
Ta có: , suy ra: BC = 2AD
Cho hìn thang ABCD ( AB // CD ) có: AB =4cm, CD= 16cm, BD=8cm. C/m \(\widehat{BAD}=\widehat{DBC}\); BC=2AD
cho hình thang abcd (ab song song với bc) có ab = 4 cm cd = 16cm, bd = 8cm . Chứng minh góc BAD = góc DBC và BC = 2AD
Hình thang ABCD (AB // CD) có AB = 4cm, CD = 16 cm và BD = 8cm (H.23)
Chứng minh \(\widehat{BAD}=\widehat{DBC}\) và \(BC=2AD\) ?
Hình thang ABCD (AB//CD) có AB = 4cm; CD = 16cm và BD = 8cm, góc ADB bằng 40 độ . Tính số đo góc C của hình thang.
Cho hình thang ABCD (AB // CD) có: AB=4cm , CD=16cm ,BD=8cm ,\(\widehat{ADB}\)= 40độ.Tính góc C trong hình thang
a. Cho Tam giác ABC vuông tại A, từ điểm H trên cạnh AC kẻ HK ^ BC tại K. Chứng minh: AB. KC = KH. AC.
b. Cho hình thang ABCD (AB//CD, AB < CD) có AB = 4cm, CD = 16cm, BD = 8cm. Chứng minh: góc DAB và góc DBC.
c. Cho ∆ABC nhọn , hai đường cao AH và BK cắt nhau tại I. Chứng minh: CA.BK = AH.BC.
hình thang abcd có ab=2cm , bc=4cm , cd=8cm . Chứng minh góc A bằng góc DBC