Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê thị thu huyền
Xem chi tiết
Phạm Thùy Dung
Xem chi tiết
Kudo Shinichi
6 tháng 10 2019 lúc 16:15

\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)

\(=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17}{8}ab-\frac{1}{8}ab\)

\(\ge2.\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}.\frac{17}{8}ab}-\frac{1}{8}.\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow A\ge2.\frac{4}{\left(a+b\right)^2}+2.\frac{17}{2}-\frac{1}{8}.\frac{4}{4^2}+17-\frac{1}{2}\)

\(\Leftrightarrow A\ge\frac{1}{2}+17-\frac{1}{2}=17\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)

Chúc bạn học tốt !!!

Sói Xông Lam
Xem chi tiết
Nguyễn Thu Thủy
Xem chi tiết
ĐÀO ANH THƯ
27 tháng 5 2021 lúc 18:16

Lượn lờ trên Hỏi Bài mà khó thế má

Khách vãng lai đã xóa
Nguyễn Thu Thủy
27 tháng 5 2021 lúc 21:16

sai đề mng ạ :> lỗi của mình a^3 +b^3 +11 ạ trên tử ấy

Khách vãng lai đã xóa
Hày Cưi
Xem chi tiết
Doraemon
16 tháng 11 2018 lúc 17:33

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

Hày Cưi
16 tháng 11 2018 lúc 17:39

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

thục khuê nguyễn
Xem chi tiết
tran huu dinh
Xem chi tiết
Trà My
28 tháng 3 2017 lúc 23:36

Câu hỏi của tran huu dinh - Toán lớp 8 - Học toán với OnlineMath

Trà My
28 tháng 3 2017 lúc 23:36

một bài y chang đã làm rồi :)

Thầy Tùng Dương
Xem chi tiết
Dương Ngọc Hảo
15 tháng 5 2021 lúc 8:43

undefined

Khách vãng lai đã xóa
Nguyễn Huy Trường Hiếu
22 tháng 10 2021 lúc 16:06

loading...

 

Khách vãng lai đã xóa
Vũ Đức Anh
18 tháng 4 2022 lúc 20:32

1x+1y≥4x+y,x,y>0.

Dấu "=" xảy ra ⇔x=y. ( Chứng minh bằng phương pháp biến tổi tươg đuơng)

M=1a2+b2+2ab+4ab +)  +) 

Thầy Tùng Dương
Xem chi tiết
nhật linh
14 tháng 5 2021 lúc 10:03

\(M=\frac{1}{a^2+b^2}+\frac{2}{ab}+4ab\)

\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{5}{4ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{5}{4ab}\)

( Nếu đi thi thì sẽ phải chứng minh \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) cái này nhân chéo và cô si là xong )

Ta có BĐT phụ: \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đúng )

\(\Rightarrow M\ge\frac{4}{1}+2+5=11\)

Dấu "=" xảy ra <=> a=b=1/2 

Vậy ...

Khách vãng lai đã xóa